题目内容
【题目】某日A,B,C三个城市18个销售点的小麦价格如下表:
销售点序号 | 所属城市 | 小麦价格(元/吨) | 销售点序号 | 所属城市 | 小麦价格(元/吨) |
1 | A | 2420 | 10 | B | 2500 |
2 | C | 2580 | 11 | A | 2460 |
3 | C | 2470 | 12 | A | 2460 |
4 | C | 2540 | 13 | A | 2500 |
5 | A | 2430 | 14 | B | 2500 |
6 | C | 2400 | 15 | B | 2450 |
7 | A | 2440 | 16 | B | 2460 |
8 | B | 2500 | 17 | A | 2460 |
9 | A | 2440 | 18 | A | 2540 |
(1)甲以B市5个销售点小麦价格的中位数作为购买价格,乙从C市4个销售点中随机挑选2个了解小麦价格.记乙挑选的2个销售点中小麦价格比甲的购买价格高的个数为,求的分布列及数学期望;
(2)如果一个城市的销售点小麦价格方差越大,则称其价格差异性越大.请你对A,B,C三个城市按照小麦价格差异性从大到小进行排序(只写出结果).
【答案】(1)分布列见解析,期望为1(2)C,A,B
【解析】
(1)由题意可得的可能取值为0,1,2.求出相应的概率值,即可得到的分布列及数学期望;
(2)三个城市按照价格差异性从大到小排列为:C,A,B.
解:(1)B市共有5个销售点,其小麦价格从低到高排列为:2450,2460,2500,2500,2500.所以中位数为2500,所以甲的购买价格为2500.
C市共有4个销售点,其小麦价格从低到高排列为:2400,2470,2540,2580,
故的可能取值为0,1,2.
, ,.
所以分布列为
所以数学期望.
(2)三个城市按小麦价格差异性从大到小排序为:C,A,B
练习册系列答案
相关题目