题目内容
【题目】在四棱锥 P - ABCD 中,锐角三角形 PAD 所在平面垂直于平面 PAB,AB⊥AD,AB⊥BC。
(1) 求证:BC∥平面 PAD;
(2) 平面 PAD⊥ 平面 ABCD.
【答案】(1)见解析; (2)见解析.
【解析】
(1)由AB⊥AD,AB⊥BC可得BC∥AD,从而得证;
(2)作DE⊥PA于E,可证DE⊥平面PAB,进而可证AB⊥平面PAD,即可证得.
(1)四边形ABCD中,因为AB⊥AD,AB⊥BC,
所以,BC∥AD,BC在平面PAD外,
所以,BC∥平面PAD
(2)作DE⊥PA于E,
因为平面PAD⊥平面PAB,而平面PAD∩平面PAB=PA,
所以,DE⊥平面PAB,
所以,DE⊥AB,又AD⊥AB,DE∩AD=D
所以,AB⊥平面PAD,
AB在平面ABCD内
所以,平面PAD⊥平面ABCD.
练习册系列答案
相关题目
【题目】某商场在促销期间规定:商场内所有商品按标价的出售,当顾客在商场内消费一定金额后,按如下方案获得相应金额的奖券:
消费金额(元)的范围 | … | ||||
获得奖券的金额(元) | 30 | 60 | 100 | 130 | … |
根据上述促销方法,顾客在该商场购物可以获得双重优惠,例如:购买标价为400元的商品,则消费金额为320元,获得的优惠额为:元,设购买商品得到的优惠率=(购买商品获得的优惠额)/(商品标价),试问:
(1)若购买一件标价为1000元的商品,顾客得到的优惠率是多少?
(2)对于标价在(元)内的商品,顾客购买标价为多少元的商品,可得到不小于的优惠率?