题目内容
【题目】在中,角对的边分别为,已知.
(Ⅰ)若,求的取值范围;
(Ⅱ)若,求面积的最大值.
【答案】(1);(2).
【解析】试题分析:本题主要考查正弦定理、余弦定理、向量的数量积、基本不等式、三角形面积公式、两角和的正弦公式等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,先利用正弦定理将b和c转化成角,再利用两角和的正弦公式展开,将表达式化简成的形式,利用角,得到B角的范围,利用三角函数的有界性求函数值域即b+c的取值范围;第二问,利用余弦定理,利用基本不等式求出bc的取值范围,再利用向量的数量积将展开,利用平方关系求出,最后代入到三角形面积公式中得到面积的最大值.
试题解析:(1)∵,∴( 2分)
.
( 6分)
(2)∵,∴∴(8分)
( 10分)
当且仅当时,的面积取到最大值为. (12分)
练习册系列答案
相关题目
【题目】电视传媒公司为了解某地区观众对某体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名,下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:
将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.
(1)根据已知条件完成下面的22列联表,并据此资料你是否认为“体育迷”与性别有关?
非体育迷 | 体育迷 | 合计 | |
男 | |||
女 | 10 | 55 | |
合计 |
(2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X.若每次抽取的结果是相互独立的,求X的分布列,期望E(X)和方差D(X).
附:.
P(K2≥k) | 0.05 | 0.01 |
k | 3.841 | 6.635 |