题目内容
已知等差数列{an}满足a2=0,a6+a8=-10.(1)求数列{an}的通项公式;(2)求数列的前n项和.
(1)an=2-n.(2)
解析
已知等差数列的前三项依次为a,4,3a,前n项和为Sn,且Sk=110.(1)求a及k的值;(2)设数列{bn}的通项bn=,证明数列{bn}是等差数列,并求其前n项和Tn.
数列{an}满足a1=1,an+1=(n2+n-λ)an(n=1,2,…),λ是常数.(1)当a2=-1时,求λ及a3的值.(2)数列{an}是否可能为等差数列?若可能,求出它的通项公式;若不可能,说明理由.
在等差数列中,,其前n项和为,等比数列的各项均为正数,,公比为q,且,.(1)求与;(2)设数列满足,求的前n项和.
已知数列{an}是首项为,公比为的等比数列,设bn+15log3an=t,常数t∈N*.(1)求证:{bn}为等差数列;(2)设数列{cn}满足cn=anbn,是否存在正整数k,使ck,ck+1,ck+2按某种次序排列后成等比数列?若存在,求k,t的值;若不存在,请说明理由.
设无穷数列的首项,前项和为(),且点在直线上(为与无关的正实数).(1)求证:数列()为等比数列;(2)记数列的公比为,数列满足,设,求数列的前项和;(3)若(2)中数列{Cn}的前n项和Tn当时不等式恒成立,求实数a的取值范围。
已知单调递增的等比数列{an}满足:a2+a3+a4=28,且a3+2是a2和a4的等差中项.(1)求数列{an}的通项公式an;(2)令bn=anlogan,Sn=b1+b2+…+bn,求使Sn+n·2n+1>50成立的最小的正整数n.
已知等比数列的各项均为正数,且,.(1)求数列的通项公式;(2)设,求数列的前项和.
在数列中,前n项和为,且.(Ⅰ)求数列的通项公式;(Ⅱ)设,数列前n项和为,求的取值范围.