题目内容
【题目】若无穷数列满足:,当,时.
其中表示,,,中的最大项,有以下结论:
若数列是常数列,则
若数列是公差的等差数列,则;
若数列是公比为q的等比数列,则
则其中正确的结论是______写出所有正确结论的序号
【答案】
【解析】
根据题中条件,逐项判断即可.
若数列是常数列,则有,所以,
又,所以,故,又,
所以,即.故正确;
若数列是公差的等差数列,若,则数列是递增数列,则,则,,不能满足数列为公差的等差数列;若,则数列是递减数列,则,所以满足题意;故正确;
若数列是公比为q的等比数列,若q>1,由可知数列是递增数列,所以,所以,即q=2满足题意;
若0<q<1,由可知数列是递减数列,所以,所以,故,因为0<q<1,所以显然不成立,故0<q<1不满足题意;若q<0,则数列是摆动数列,不能满足题意;综上q>1,故正确.
故答案为
练习册系列答案
相关题目
【题目】高铁、网购、移动支付和共享单车被誉为中国的“新四大发明”,彰显出中国式创新的强劲活力.某移动支付公司从某市移动支付用户中随机抽取100人进行调查,得到如下数据:
每周移动支付次数 | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 |
男 | 10 | 8 | 7 | 3 | 2 | 15 |
女 | 5 | 4 | 6 | 4 | 6 | 30 |
总计 | 15 | 12 | 13 | 7 | 8 | 45 |
(1)把每周使用移动支付6次及以上的用户称为“移动支付达人”,按分层抽样的方法,从参与调查的“移动支付达人”中,随机抽取6人,求抽取的6人中,男、女用户各多少人;
(2)把每周使用移动支付超过3次的用户称为“移动支付活跃用户”,根据表格中的数据完成下列列联表,问:能否有的把握认为“移动支付活跃用户”与性别有关?
非移动支付活跃用户 | 移动支付活跃用户 | 总计 | |
男 | |||
女 | |||
总计 |
附参照表:
0.10 | 0.05 | 0.025 | 0.01 | |
2.706 | 3.841 | 5.024 | 6.635 |
参考公式:,其中