题目内容

【题目】如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.
(1)证明:MN∥平面PAB;
(2)求直线AN与平面PMN所成角的正弦值.

【答案】
(1)

证明:取BC中点E,连结EN,EM,

∵N为PC的中点,∴NE是△PBC的中位线,

∴NE∥PB,

又∵AD∥BC,∴BE∥AD,

∵AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,

∴BE= BC=AM=2,

∴四边形ABEM是平行四边形,

∴EM∥AB,∴平面NEM∥平面PAB,

∵MN平面NEM,∴MN∥平面PAB


(2)

解:在△AMC中,由AM=2,AC=3,cos∠MAC= ,得CM2=AC2+AM2﹣2ACAMcos∠MAC=9+4- =5.

∴AM2+MC2=AC2,则AM⊥MC,

∵PA⊥底面ABCD,PA平面PAD,

∴平面ABCD⊥平面PAD,且平面ABCD∩平面PAD=AD,

∴CM⊥平面PAD,则平面PNM⊥平面PAD.

在平面PAD内,过A作AF⊥PM,交PM于F,连接NF,则∠ANF为直线AN与平面PMN所成角.

在Rt△PAC中,由N是PC的中点,得AN=

在Rt△PAM中,由PAAM=PMAF,得AF=

∴直线AN与平面PMN所成角的正弦值为


【解析】(1)法一、取PB中点G,连接AG,NG,由三角形的中位线定理可得NG∥BC,且NG= BC,再由已知得AM∥BC,且AM= BC,得到NG∥AM,且NG=AM,说明四边形AMNG为平行四边形,可得NM∥AG,由线面平行的判定得到MN∥平面PAB;
法二、证明MN∥平面PAB,转化为证明平面NEM∥平面PAB,在△PAC中,过N作NE⊥AC,垂足为E,连接ME,由已知PA⊥底面ABCD,可得PA∥NE,通过求解直角三角形得到ME∥AB,由面面平行的判定可得平面NEM∥平面PAB,则结论得证;
(2)连接CM,证得CM⊥AD,进一步得到平面PNM⊥平面PAD,在平面PAD内,过A作AF⊥PM,交PM于F,连接NF,则∠ANF为直线AN与平面PMN所成角.然后求解直角三角形可得直线AN与平面PMN所成角的正弦值.本题考查直线与平面平行的判定,考查直线与平面所成角的求法,考查数学转化思想方法,考查了空间想象能力和计算能力,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网