题目内容

【题目】已知函数f(x)= x3﹣2ax2+3a2x+b(a>0).
(1)当y=f(x)的极小值为1时,求b的值;
(2)若f(x)在区间[1,2]上是减函数,求a的范围.

【答案】
(1)解:f′(x)=x2﹣4ax+3a2=(x﹣a)(x﹣3a),

令f′(x)≥0,解得:x≤a,x≥3a,

令f′(x)<0,解得:a<x<3a,

故f(x)在(﹣∞,a)递增,在(a,3a)递减,在(3a,+∞)递增,

由函数的单调性可知,函数在x=3a处取极小值,

即f(3a)= (3a)3﹣2a(3a)2+3a23a+b=1,

所以b=1;


(2)解:f′(x)=x2﹣4ax+3a2=(x﹣a)(x﹣3a),

要使f(x)在区间[1,2]上是减函数,

则导数在[1,2]小于等于0,

即[1,2][a,3a],

所以 ≤a≤1


【解析】(1)求出函数的导数,得到函数的单调区间,从而求出f(3a)是函数的极小值,求出b的值即可;(2)根据函数的单调性得到[1,2][a,3a],求出a的范围化简.
【考点精析】根据题目的已知条件,利用利用导数研究函数的单调性和函数的极值与导数的相关知识可以得到问题的答案,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网