题目内容
已知f(x)=(x≠a).
(1)若a=-2,试证f(x)在(-∞,-2)内单调递增;
(2)若a>0且f(x)在(1,+∞)内单调递减,求a的取值范围.
(1)若a=-2,试证f(x)在(-∞,-2)内单调递增;
(2)若a>0且f(x)在(1,+∞)内单调递减,求a的取值范围.
(1)证明见解析(2)0<a≤1
(1)证明 任设x1<x2<-2,则f(x1)-f(x2)=
∵(x1+2)(x2+2)>0,x1-x2<0,∴f(x1)<f(x2),∴f(x)在(-∞,-2)内单调递增.
(2)解 任设1<x1<x2,则f(x1)-f(x2)=
∵a>0,x2-x1>0,∴要使f(x1)-f(x2)>0,只需(x1-a)(x2-a)>0恒成立,
∴a≤1.综上所述知0<a≤1.
∵(x1+2)(x2+2)>0,x1-x2<0,∴f(x1)<f(x2),∴f(x)在(-∞,-2)内单调递增.
(2)解 任设1<x1<x2,则f(x1)-f(x2)=
∵a>0,x2-x1>0,∴要使f(x1)-f(x2)>0,只需(x1-a)(x2-a)>0恒成立,
∴a≤1.综上所述知0<a≤1.
练习册系列答案
相关题目