题目内容
【题目】已知下列命题: ①x∈(0,2),3x>x3的否定是:x∈(0,2),3x≤x3;
②若f(x)=2x﹣2﹣x , 则x∈R,f(﹣x)=﹣f(x);
③若f(x)=x+ ,x0∈(0,+∞),f(x0)=1;
④在△ABC中,若A>B,则sin A>sin B.
其中真命题是 . (将所有真命题序号都填上)
【答案】①②④
【解析】解:对于①x∈(0,2),3x>x3的否定是:x∈(0,2),3x≤x3;满足命题的否定形式,正确;②若f(x)=2x﹣2﹣x,则x∈R,f(﹣x)=2﹣x﹣2x=﹣(2x﹣2﹣x)=﹣f(x);函数是奇函数,正确;③若f(x)=x+ ,x+ =1,可得x2+x+1=x+1,解得x=0,所以x0∈(0,+∞),f(x0)=1;不正确;④在△ABC中,若A>B,则sin A>sin B.在三角形中大角对大边,∵A>B,∴a>b,由正弦定理可得
从而a=2RsinA,b=2RsinB,∴2RsinA>2RsinB,∴sinA>sinB.所以④正确.
所以答案是:①②④.
【考点精析】本题主要考查了命题的真假判断与应用的相关知识点,需要掌握两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系才能正确解答此题.
【题目】学校为了了解高三学生每天自主学习中国古典文学的时间,随机抽取了高三男生和女生各50名进行问卷调查,其中每天自主学习中国古典文学的时间超过3小时的学生称为“古文迷”,否则为“非古文迷”,调查结果如表:
古文迷 | 非古文迷 | 合计 | |
男生 | 26 | 24 | 50 |
女生 | 30 | 20 | 50 |
合计 | 56 | 44 | 100 |
(Ⅰ)根据表中数据能否判断有60%的把握认为“古文迷”与性别有关?
(Ⅱ)现从调查的女生中按分层抽样的方法抽出5人进行调查,求所抽取的5人中“古文迷”和“非古文迷”的人数;
(Ⅲ)现从(Ⅱ)中所抽取的5人中再随机抽取3人进行调查,记这3人中“古文迷”的人数为ξ,求随机变量ξ的分布列与数学期望.
参考公式:K2= ,其中n=a+b+c+d.
参考数据:
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.05 | 0.025 | 0.010 |
k0 | 0.455 | 0.708 | 1.321 | 3.841 | 5.024 | 6.635 |