题目内容
【题目】给出下列五个命题:
①已知直线、和平面,若,,则;
②平面上到一个定点和一条定直线的距离相等的点的轨迹是一条抛物线;
③双曲线,则直线与双曲线有且只有一个公共点;
④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直;
⑤过的直线与椭圆交于、两点,线段中点为,设直线斜率为,直线的斜率为,则等于.
其中,正确命题的序号为_______.
【答案】④⑤
【解析】
利用线面平行的判定定理可判断①的正误;结合抛物线的定义及条件可判断②的正误;利用双曲线渐近线的性质可判断③的正误;利用反证法结合线面垂直的定义可判断④的正误;利用点差法可判断⑤的正误.
①线面平行的前提条件是直线,所以条件中没有,所以①错误;
②当定点位于定直线上时,此时点到轨迹为垂直于直线且以定点为垂足的直线,只有当点不在直线时,轨迹才是抛物线,所以②错误;
③因为双曲线的渐近线方程为,当直线与渐近线平行时直线与双曲线只有一个交点,当直线与渐近线重合时,没有交点,所以③错误;
④若,,,且与不垂直,
假设,由于,则,这与已知条件矛盾,假设不成立,则与不垂直,所以④正确;
⑤设、,中点,则,,
把,分别代入椭圆方程,
得,两式相减得,
整理得,即,所以⑤正确.
所以正确命题的序号为④⑤.
故答案为:④⑤.
【题目】2019年全国“两会”,即中华人民共和国第十三届全国人大二次会议和中国人民政治协商会议第十三届全国委员会第二次会议,分别于2019年3月5日和3月3日在北京召开为了了解哪些人更关注“两会”,某机构随机抽取了年龄在15~75岁之间的200人进行调查,并按年龄绘制的频率分布直方图如图所示,把年龄落在区间和内的人分别称为“青少年人”和“中老年人”经统计“青少年人”和“中老年人”的人数之比为.其中“青少年人”中有40人关注“两会”,“中老年人”中关注“两会”和不关注“两会”的人数之比是.
(1)求图中的值;现釆用分层抽样在和中随机抽取8名代表,从8人中仼选2人,求2人中至少有1个是“中老年人”的概率是多少?
(2)根据已知条件,完成下面的列联表,并根据此统计结果判断:能否有的把握认为“中老年人”比“青少年人”更加关注“两会”?
关注 | 不关注 | 合计 | |
青少年人 | |||
中老年人 | |||
合计 |
参考数据及公式:
0.150 | 0.100 | 0.050 | 0.010 | 0.001 | |
2.072 | 2.706 | 3.841 | 6.635 | 10.828 |