题目内容
【题目】设点是抛物线的焦点,、是上两点.若,且线段的中点到轴的距离等于.
(1)求的值;
(2)设直线与交于、两点且在轴的截距为负,过作的垂线,垂足为,若.
(i)证明:直线恒过定点,并求出该定点的坐标;
(ii)求点的轨迹方程.
【答案】(1)(2)(i)证明见解析;定点(ii)(且)
【解析】
(1)过和分别作轴的垂线,垂足分别为、,根据抛物线的定义得到,,利用建立p的方程,再根据线段的中点到轴的距离等于,有联立求解.
(2)设的方程为,与抛物线方程联立,由得到,将韦达定理代入,解得,(i)直线恒过定点.(ii)由知,点在以为直径的圆上,再根据和斜率存在确定范围.
(1)过和分别作轴的垂线,垂足分别为、,则,,
因为线段的中点到轴的距离等于,
所以,即,
又因为,所以.
(2)由题意知直线的斜率存在,设的方程为,代入抛物线方程得,
由得,(*),
设,,则.
由得,,即,
把代入得,解得或(舍去),
(i)于是直线恒过定点.
(ii)由知,所以点在以为直径的圆上,该圆的方程为,
根据(*)得,从而取圆在轴的上方部分,又直线的斜率存在,
因此应剔除与轴的交点,
故点的轨迹方程为(且).
【题目】甲、乙两人在相同条件下各射击次,每次中靶环数情况如图所示:
(1)请填写下表(先写出计算过程再填表):
平均数 | 方差 | 命中环及环以上的次数 | |
甲 | |||
乙 |
(2)从下列三个不同的角度对这次测试结果进行
①从平均数和方差相结合看(分析谁的成绩更稳定);
②从平均数和命中环及环以上的次数相结合看(分析谁的成绩好些);
③从折线图上两人射击命中环数的走势看(分析谁更有潜力).
参考公式:.
【题目】某中学为研究学生的身体素质与体育锻炼时间的关系,对该校200名高三学生平均每天体育锻炼时间进行调查,如表:(平均每天锻炼的时间单位:分钟)
平均每天锻炼的时间/分钟 | ||||||
总人数 | 20 | 36 | 44 | 50 | 40 | 10 |
将学生日均体育锻炼时间在的学生评价为“锻炼达标”.
(1)请根据上述表格中的统计数据填写下面列联表;
锻炼不达标 | 锻炼达标 | 合计 | |
男 | |||
女 | 20 | 110 | |
合计 |
并通过计算判断,是否能在犯错误的概率不超过0.025的前提下认为“锻炼达标”与性别有关?
(2)在“锻炼达标”的学生中,按男女用分层抽样方法抽出5人,进行体育锻炼体会交流,从参加体会交流的5人中,随机选出2人作重点发言,求恰好选出一名男生的概率.
参考公式:,其中
临界值表
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |