题目内容
【题目】设x≥1,y≥1,证明:x+y+≤+xy.
【答案】见解析
【解析】
由要证x+y+≤++xyxy(x+y)+1≤y+x+(xy)2,作差可得[y+x+(xy)2]-[xy(x+y)+1]=(xy-1)(x-1)(y-1),从而得证.
证明:由于x≥1,y≥1,
所以x+y+≤++xyxy(x+y)+1≤y+x+(xy)2.
[y+x+(xy)2]-[xy(x+y)+1]=[(xy)2-1]-[xy(x+y)-(x+y)]=(xy+1)·(xy-1)-(x+y)(xy-1)=(xy-1)(xy-x-y+1)=(xy-1)(x-1)(y-1).
因为x≥1,y≥1,所以(xy-1)(x-1)(y-1)≥0.
从而所要证明的不等式成立.
练习册系列答案
相关题目