题目内容

【题目】设x≥1,y≥1,证明:x+y++xy.

【答案】见解析

【解析】

由要证x+y++xyxy(x+y)+1≤y+x+(xy)2,作差可得[y+x+(xy)2]-[xy(x+y)+1]=(xy-1)(x-1)(y-1),从而得证.

证明:由于x≥1,y≥1,

所以x+y++xyxy(x+y)+1≤y+x+(xy)2.

[y+x+(xy)2]-[xy(x+y)+1]=[(xy)2-1]-[xy(x+y)-(x+y)]=(xy+1)·(xy-1)-(x+y)(xy-1)=(xy-1)(xy-x-y+1)=(xy-1)(x-1)(y-1).

因为x≥1,y≥1,所以(xy-1)(x-1)(y-1)≥0.

从而所要证明的不等式成立.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网