题目内容
【题目】函数y= 的定义域为( )
A.{x|x≥1}
B.{x|x≥1或x=0}
C.{x|x≥0}
D.{x|x=0}
【答案】B
【解析】解:∵函数y= ,
∴|x|(x﹣1)≥0,
解得|x|≥0或x﹣1≥0,
即x≥1或x=0;
所以函数y的定义域为{x|x≥1或x=0}.
故选:B.
【考点精析】本题主要考查了函数的定义域及其求法的相关知识点,需要掌握求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数;②是分式函数时,定义域是使分母不为零的一切实数;③是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零才能正确解答此题.
练习册系列答案
相关题目