题目内容

18.圆$\left\{\begin{array}{l}x=-1+\sqrt{2}cosθ\\ y=1+\sqrt{2}sinθ\end{array}\right.$(θ为参数)被直线y=0截得的劣弧长为(  )
A.$\frac{{\sqrt{2}π}}{2}$B.πC.$2\sqrt{2}π$D.

分析 求出圆心与半径,圆$\left\{\begin{array}{l}x=-1+\sqrt{2}cosθ\\ y=1+\sqrt{2}sinθ\end{array}\right.$(θ为参数)被直线y=0截得的劣弧所对的圆心角,即可得出结论.

解答 解:圆$\left\{\begin{array}{l}x=-1+\sqrt{2}cosθ\\ y=1+\sqrt{2}sinθ\end{array}\right.$(θ为参数)的圆心为(-1,1),半径为$\sqrt{2}$,
圆$\left\{\begin{array}{l}x=-1+\sqrt{2}cosθ\\ y=1+\sqrt{2}sinθ\end{array}\right.$(θ为参数)被直线y=0截得的劣弧所对的圆心角为$\frac{π}{2}$,
所以劣弧长为$\frac{\sqrt{2}π}{2}$.
故选:A.

点评 本题考查直线与圆相交的性质,考查学生的计算能力,比较基础.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网