题目内容
如图,正三棱柱
所有棱长都是2,D棱AC的中点,E是
棱的中点,AE交
于点H.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240425408516195.png)
(1)求证:
平面
;
(2)求二面角
的余弦值;
(3)求点
到平面
的距离.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042540805663.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042540805373.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042540836437.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240425408516195.png)
(1)求证:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042540867428.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042540898506.png)
(2)求二面角
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042540914565.png)
(3)求点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042540929337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042540898506.png)
(1)参考解析;(2)
;(3) ![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042540976488.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042540976430.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042540976488.png)
试题分析:(1)由正三棱柱
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042540805663.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042541023435.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042541039332.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042540836437.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042540867428.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042540898506.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/2014082404254111715270.jpg)
(2)由平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042541132473.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042541148495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042540914565.png)
(3)点到平面的距离,转化为直线与法向量的关系,再通过解三角形的知识即可得点到平面的距离.本小题关键是应用解三角形的知识.
试题解析:(1)证明:建立如图所示,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240425411791039.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042541210720.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042541226661.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042541241644.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042541257796.png)
∴AE⊥面A1BD
(2)由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240425412731823.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042541288652.png)
设面AA1B的法向量为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240425413041448.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240425413191898.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240425413351270.png)
由图可知二面角D—BA1—A的余弦值为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042540976430.png)
(3)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042541351678.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042541366650.png)
则B1到平面A1BD的距离d=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240425413821045.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目