题目内容
如图,在四棱锥
中,底面
是正方形,侧棱
⊥底面
,
,
是
的中点,作
交
于点
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240423027764920.png)
(1)证明
平面
;
(2)证明
平面
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042302620604.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042302636534.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042302652365.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042302636534.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042302683502.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042302698318.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042302714383.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042302730551.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042302745365.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042302761302.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240423027764920.png)
(1)证明
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042302792439.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042302808456.png)
(2)证明
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042302839387.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042302854477.png)
(1)见解析(2)见解析
试题分析:(1)连接AC,AC交BD于O.连接EO.根据正方形的性质,得EO是△PAC的中位线,得PA∥EO,从而得到PA∥平面EDB;
(2)过F点作FG⊥PC于G,可得FG⊥平面PDE,FG是点F到平面PDE的距离.等腰Rt△PDC中,算出PE长和△PED的面积,再利用三角形相似算出PF和FG的长,最后用锥体体积公式,可算出三棱锥P-DEF的体积.
试题解析:方法一:
(1)证明:连结AC,AC交BD于O,连结EO。
∵底面ABCD是正方形,∴点O是AC的中点
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042302870530.png)
而
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042302886440.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042302886450.png)
所以,PA//平面EDB
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240423029011382.png)
(2)证明:
∵PD⊥底面ABCD且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042302917442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042302932515.png)
∵PD=DC,可知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042302948531.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042302964580.png)
同样由PD⊥底面ABCD,得PD⊥BC。
∵底面ABCD是正方形,有DC⊥BC,∴BC⊥平面PDC。
而
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042302964446.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042302979584.png)
由①和②推得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042302995441.png)
而
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042303010403.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042303026545.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042302730551.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042303057622.png)
方法二:如图所示建立空间直角坐标系,D为坐标原点,设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042303073487.png)
(1)证明:连结AC,AC交BD于G,连结EG。
依题意得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240423030881280.png)
∵底面ABCD是正方形,∴G是此正方形的中心,故点G的坐标为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042303104695.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240423031201256.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042303135644.png)
而
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042303151456.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042302886450.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240423031821092.png)
(2)证明;依题意得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042303198587.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042303213668.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042303229860.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240423032601040.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042303276541.png)
由已知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042302730551.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042303307619.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042302839387.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目