题目内容
如图,已知四棱锥
的底面的菱形,
,点
是
边的中点,
交于点
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922513741.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240449225294695.png)
(1)求证:
;
(2)若
的大小;
(3)在(2)的条件下,求异面直线
与
所成角的余弦值。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922388603.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922404676.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922420318.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922435398.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922451621.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922466292.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922513741.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240449225294695.png)
(1)求证:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922544535.png)
(2)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240449225761306.png)
(3)在(2)的条件下,求异面直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922591365.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922607408.png)
(1)(2)
(3)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922638396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922638433.png)
试题分析:(1)因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922669393.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922669526.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922607408.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922716365.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922669526.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922544535.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922763578.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922778374.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922794456.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922607408.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922435398.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922763578.png)
(2)由(1)知,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922872736.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922872592.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922903508.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922919556.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922934431.png)
(3)取
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922950385.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922966303.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922966546.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922981566.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922997350.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922591365.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922607408.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922591365.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044923059487.png)
试题解析:解答一:(1)在菱形
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922669526.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044923090394.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044923106532.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044923122235.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922420318.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922435398.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044923168599.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044923184422.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922669526.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044923215373.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922716365.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922669526.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044923293552.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240449233096843.jpg)
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044923324740.png)
菱形
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922669526.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922872592.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044923387571.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044923184422.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922669526.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922607408.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922716365.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922669526.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044923496528.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922903508.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922919556.png)
在菱形
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922669526.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044923558544.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044923106532.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044923122235.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922420318.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922435398.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044923652401.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922778374.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044923699195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922466292.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044923106532.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044923746633.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044923122235.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044923777537.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240449237921514.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044923808608.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044923824799.png)
所以在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044923839605.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240449238551027.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044923870730.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044923699195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922919556.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922638396.png)
(3)取
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922950385.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922966303.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922997350.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044923964360.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922981566.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044923995380.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922591365.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922607408.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922591365.png)
连结
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044924058482.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044923184422.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922669526.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044924104371.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044924120409.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922669526.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044924136667.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044924151612.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044924167743.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044924182595.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044924151612.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044924214887.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044924229601.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240449242451174.png)
由(2)可知,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044924260620.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922997350.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922591365.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044924338310.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240449243541335.png)
所以异面直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922591365.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922607408.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922638433.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240449244325692.png)
解法二:(1)同解法一;
(2)过点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922466292.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922950385.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044924494396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044924510302.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922466292.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240449245572512.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240449245721316.png)
设平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044924588439.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044924619710.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044924635875.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240449246501321.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044924682766.png)
不妨设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044924697585.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044924713733.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044924744483.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240449247601288.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044923699195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922919556.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922638396.png)
(3)由已知,可得点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044924822598.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240449248532404.png)
即异面直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044924869535.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044922638433.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目