题目内容
如图所示,直三棱柱ABCA1B1C1中,D、E分别是AB、BB1的中点,AA1=AC=CB=
AB.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240414113932973.jpg)
(1)证明:BC1∥平面A1CD;
(2)求二面角DA1CE的正弦值..
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041411377413.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240414113932973.jpg)
(1)证明:BC1∥平面A1CD;
(2)求二面角DA1CE的正弦值..
(1)见解析(2)![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041411408466.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041411408466.png)
(1)证明:连结AC1交A1C于点F,则F为AC1中点.又D是AB中点,连结DF,则BC1∥DF.
因为DF
?平面A1CD,BC1
平面A1CD,所以BC1∥平面A1CD.
(2)由AC=CB=
AB得AC⊥BC.以C为坐标原点,
的方向为x轴正方向,建立如图所示的空间直角坐标系Cxyz.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240414114713781.jpg)
设CA=2,则D(1,1,0),E(0,2,1),A1(2,0,2),
=(1,1,0),
=(0,2,1),
=(2,0,2).
设n=(x1,y1,z1)是平面A1CD的法向量,则
即![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041411533964.png)
可取n=(1,-1,-1).
同理,设m为平面A1CE的法向量,则
可取m=(2,1,-2).
从而cos〈n,m〉=
=
,故sin〈n,m〉=
.即二面角D-A1C-E的正弦值为![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041411408466.png)
因为DF
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041411424190.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041411439275.png)
(2)由AC=CB=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041411377413.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041411455399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240414114713781.jpg)
设CA=2,则D(1,1,0),E(0,2,1),A1(2,0,2),
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041411486421.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041411502421.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041411517447.png)
设n=(x1,y1,z1)是平面A1CD的法向量,则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041411533983.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041411533964.png)
可取n=(1,-1,-1).
同理,设m为平面A1CE的法向量,则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240414115641020.png)
从而cos〈n,m〉=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041411564555.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041411580419.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041411408466.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041411408466.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目