题目内容

5.已知函数f(x)=xlnx.
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)对于任意正实数x,不等式f(x)>kx-$\frac{1}{2}$恒成立,求实数k的取值范围;
(Ⅲ)求证:当a>3时,对于任意正实数x,不等式f(a+x)<f(a)•ex恒成立.

分析 (Ⅰ)利用导数即可求出单调区间;
(Ⅱ)分离参数,构造函数,求出函数的最小值即可;
(Ⅲ)问题转化为$\frac{(a+x)ln(a+x)}{{e}^{a+x}}$<$\frac{alna}{{e}^{a}}$,构造函数g(x)=$\frac{xlnx}{{e}^{x}}$,则问题就是要求g(a+x)<g(a)恒成立,多次构造函数和求导,利用导数和函数最值的关系,问题得以证明.

解答 解:(Ⅰ)∵f(x)=xlnx.
∴f′(x)=1+lnx,
当x∈(0,$\frac{1}{e}$)时,f′(x)<0;当x∈($\frac{1}{e}$,+∞)时,f′(x)>0.
所以函数f(x)在(0,$\frac{1}{e}$)上单调递减,在($\frac{1}{e}$,+∞)上单调递增.
(Ⅱ)由于x>0,f(x)>kx-$\frac{1}{2}$恒成立,
∴k=lnx+$\frac{1}{2x}$.
构造函数k(x)=lnx+$\frac{1}{2x}$.
∴k′(x)=$\frac{1}{x}$-$\frac{1}{2{x}^{2}}$=$\frac{2x-1}{2{x}^{2}}$.
令k′(x)=0,解得x=$\frac{1}{2}$,
当x∈(0,$\frac{1}{2}$)时,k′(x)<0,当x∈($\frac{1}{2}$,+∞)时,k′(x)>0.
∴函数k(x)在点x=$\frac{1}{2}$处取得最小值,即k($\frac{1}{2}$)=1-ln2.
因此所求的k的取值范围是(-∞,1-ln2).
(Ⅲ)f(a+x)<f(a)•ex?(a+x)ln(a+x)<alna)•ex?$\frac{(a+x)ln(a+x)}{{e}^{a+x}}$<$\frac{alna}{{e}^{a}}$.
构造函数g(x)=$\frac{xlnx}{{e}^{x}}$,则问题就是要求g(a+x)<g(a)恒成立.
对于g(x)求导得 g′(x)=$\frac{(lnx+1){e}^{x}-xlnx•{e}^{x}}{{e}^{2x}}$.
令h(x)=lnx+1-xlnx,则h′(x)=$\frac{1}{x}$-lnx-1,显然h′(x)是减函数.
当x>1时,h′(x)<h′(1)=0,从而函数h(x)在(1,+∞)上也是减函数.
从而当x>3时,h(x)<h(e)=lne+1-elne=2-e<0,即 g′(x)<0,
即函数g(x)=$\frac{xlnx}{{e}^{x}}$在区间(3,+∞)上是减函数.
当a>3时,对于任意的非零正数x,a+x>a>3,进而有g(a+x)<g(a)恒成立,结论得证.

点评 本小题主要考查函数与导数的综合应用能力,具体涉及到用导数来研究函数的单调性、极值以及函数零点的情况.属于难题

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网