题目内容
在△ABC中,角A,B,C对应的边分别是 a,b,c.已知cos 2A-3cos(B+C)=1.
(1)求角A的大小;
(2)若△ABC的面积S=5,b=5,求sin Bsin C的值.
(1)A=(2)
【解析】(1)由cos 2A-3cos(B+C)=1,得2cos2A+3cos A-2=0,
即(2cos A-1)(cos A+2)=0,
解得cos A=或cos A=-2(舍去).因为0<A<π,所以A=,
(2)由S=bcsin A=bc·=bc=5,得bc=20.又b=5,知c=4.
由余弦定理得a2=b2+c2-2bccos A=25+16-20=21,故a=.
又由正弦定理得sin B=sin A,sin C=sin A.
∴sin B·sin C=sin2A=×=.
练习册系列答案
相关题目
某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:
A配方的频数分布表
指标值分组 | [90,94) | [94,98) | [98,102) | [102,106) | [106,110) |
频数 | 8 | 20 | 42 | 22 | 8 |
B配方的频数分布表
指标值分组 | [90,94) | [94,98) | [98,102) | [102,106) | [106,110) |
频数 | 4 | 12 | 42 | 32 | 10 |
(1)分别估计用A配方,B配方生产的产品的优质品率;
(2)已知用B配方生产的一件产品的利润y(单位:元)与其质量指标值t的关系式为y=从用B配方生产的产品中任取一件,其利润记为X(单位:元),求X的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)