ÌâÄ¿ÄÚÈÝ
£¨2013•Ã¯Ãû¶þÄ££©ÊýÁÐ{an}µÄÇ°nÏîºÍSn£¬a1=t£¬µã£¨Sn£¬an+1£©ÔÚÖ±Ïßy=2x+1ÉÏ£¬£¨n=1£¬2£¬¡£©
£¨1£©ÈôÊýÁÐ{an}ÊǵȱÈÊýÁУ¬ÇóʵÊýtµÄÖµ£»
£¨2£©Éèbn=£¨n+1£©•log3an+1£¬ÊýÁÐ{
}Ç°nÏîºÍTn£®ÔÚ£¨1£©µÄÌõ¼þÏ£¬Ö¤Ã÷²»µÈʽTn£¼1£»
£¨3£©Éè¸÷Ïî¾ù²»Îª0µÄÊýÁÐ{cn}ÖУ¬ËùÓÐÂú×ãci•ci+1£¼0µÄÕûÊýiµÄ¸öÊý³ÆΪÕâ¸öÊýÁÐ{cn}µÄ¡°»ýÒìºÅÊý¡±£¬ÔÚ£¨1£©µÄÌõ¼þÏ£¬Áîcn=
£¨n=1£¬2£¬¡£©£¬ÇóÊýÁÐ{cn}µÄ¡°»ýÒìºÅÊý¡±
£¨1£©ÈôÊýÁÐ{an}ÊǵȱÈÊýÁУ¬ÇóʵÊýtµÄÖµ£»
£¨2£©Éèbn=£¨n+1£©•log3an+1£¬ÊýÁÐ{
1 |
bn |
£¨3£©Éè¸÷Ïî¾ù²»Îª0µÄÊýÁÐ{cn}ÖУ¬ËùÓÐÂú×ãci•ci+1£¼0µÄÕûÊýiµÄ¸öÊý³ÆΪÕâ¸öÊýÁÐ{cn}µÄ¡°»ýÒìºÅÊý¡±£¬ÔÚ£¨1£©µÄÌõ¼þÏ£¬Áîcn=
nan-4 |
nan |
·ÖÎö£º£¨1£©ÀûÓõ㣨Sn£¬an+1£©ÔÚÖ±Ïßy=2x+1ÉÏ£¬¿ÉµÃan+1=2Sn+1£¬ÔÙдһʽ£¬Á½Ê½Ïà¼õ£¬ÀûÓÃa1=t£¬ÊýÁÐ{an}ÊǵȱÈÊýÁУ¬´Ó¶ø¿ÉÇótµÄÖµ£»
£¨2£©È·¶¨ÊýÁÐ{
}µÄͨÏÀûÓÃÁÑÏî·¨ÇóÊýÁеĺͣ¬¼´¿ÉÖ¤µÃ½áÂÛ£»
£¨3£©ÏÈÈ·¶¨c1c2=-1£¬ÔÙÖ¤Ã÷ÊýÁÐ{cn}ÊǵÝÔöÊýÁУ¬¼´¿ÉÇóÊýÁÐ{cn}µÄ¡°»ýÒìºÅÊý¡±£®
£¨2£©È·¶¨ÊýÁÐ{
1 |
bn |
£¨3£©ÏÈÈ·¶¨c1c2=-1£¬ÔÙÖ¤Ã÷ÊýÁÐ{cn}ÊǵÝÔöÊýÁУ¬¼´¿ÉÇóÊýÁÐ{cn}µÄ¡°»ýÒìºÅÊý¡±£®
½â´ð£º£¨1£©½â£ºÒòΪµã£¨Sn£¬an+1£©ÔÚÖ±Ïßy=2x+1ÉÏ£¬ËùÒÔan+1=2Sn+1
ËùÒÔn¡Ý2ʱ£¬an=2Sn-1+1
Á½Ê½Ïà¼õ¿ÉµÃan+1-an=2an
ËùÒÔan+1=3an£¨n¡Ý2£©
¡ßa1=t£¬ÊýÁÐ{an}ÊǵȱÈÊýÁУ¬
¡à
=
=3£¬¡àt=1£»
£¨2£©Ö¤Ã÷£ºÓÉ£¨1£©µÃbn=£¨n+1£©•log3an+1=n£¨n+1£©
¡à
=
=
-
¡àTn=
+
+¡+
=1-
+
-
+¡+
-
=1-
£¼1£»
£¨3£©½â£ºÓÉ£¨1£©Öª£¬an=3n-1
¡àcn=
=1-
¡àc1=1-4=-3£¬c2=1-
=
¡àc1c2=-1
¡ßcn+1-cn=1-
-1+
=
£¾0
¡àÊýÁÐ{cn}ÊǵÝÔöÊýÁÐ
¡ßc2=1-
=
£¾0£¬¡àn¡Ý2ʱ£¬cn£¾0
¡àÊýÁÐ{cn}µÄ¡°»ýÒìºÅÊý¡±Îª1
ËùÒÔn¡Ý2ʱ£¬an=2Sn-1+1
Á½Ê½Ïà¼õ¿ÉµÃan+1-an=2an
ËùÒÔan+1=3an£¨n¡Ý2£©
¡ßa1=t£¬ÊýÁÐ{an}ÊǵȱÈÊýÁУ¬
¡à
a2 |
a1 |
2t+1 |
t |
£¨2£©Ö¤Ã÷£ºÓÉ£¨1£©µÃbn=£¨n+1£©•log3an+1=n£¨n+1£©
¡à
1 |
bn |
1 |
n(n+1) |
1 |
n |
1 |
n+1 |
¡àTn=
1 |
b1 |
1 |
b2 |
1 |
bn |
1 |
2 |
1 |
2 |
1 |
3 |
1 |
n |
1 |
n+1 |
1 |
n+1 |
£¨3£©½â£ºÓÉ£¨1£©Öª£¬an=3n-1
¡àcn=
nan-4 |
nan |
4 |
n•3n-1 |
¡àc1=1-4=-3£¬c2=1-
4 |
2¡Á3 |
1 |
3 |
¡àc1c2=-1
¡ßcn+1-cn=1-
4 |
(n+1)•3n |
4 |
n•3n-1 |
4(2n+3) |
n(n+1)•3n |
¡àÊýÁÐ{cn}ÊǵÝÔöÊýÁÐ
¡ßc2=1-
4 |
2¡Á3 |
1 |
3 |
¡àÊýÁÐ{cn}µÄ¡°»ýÒìºÅÊý¡±Îª1
µãÆÀ£º±¾Ì⿼²éÊýÁеÄͨÏîÓëÇóºÍ£¬¿¼²éж¨Ò壬¿¼²éѧÉúµÄ¼ÆËãÄÜÁ¦£¬È·¶¨ÊýÁеÄͨÏîÊǹؼü£®
![](http://thumb.zyjl.cn/images/loading.gif)
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿