题目内容
【题目】求满足下列条件的双曲线的标准方程:
(1)一条渐近线方程为,且与椭圆有相同的焦点;
(2)经过点,且与双曲线有共同的渐近线.
【答案】(1);(2).
【解析】
(1)由题意设出双曲线的标准方程,根据渐近线方程和间的关系求出后可得所求方程;或根据渐近线方程设双曲线方程为,然后由题意求出后得到所求.(2)根据题意设双曲线的方程为,代入点的坐标求出后可得所求方程.
(1)方法1:椭圆方程可化为,焦点坐标为,
故可设双曲线的方程为,其渐近线方程为,
则,
又,
所以可得,,
所以所求双曲线的标准方程为.
方法2:由于双曲线的一条渐近线方程为,则另一条渐近线方程为.
故可设双曲线的方程为,即,
因为双曲线与椭圆共焦点,
所以,
即,
解得,
所以所求双曲线的标准方程为.
(2)由题意可设所求双曲线方程为,
因为点在双曲线上,
∴,解得,
所以所求双曲线的标准方程为.
练习册系列答案
相关题目