题目内容
11.在平面直角坐标系xOy中,点列A1(x1,y1),A2(x2,y2),…,An(xn,yn),…,满足$\left\{\begin{array}{l}{x_{n+1}}=\frac{1}{2}({x_n}+{y_n})\;\\{y_{n+1}}=\frac{1}{2}({x_n}-{y_n})\;\end{array}$若A1(1,1),则$\lim_{n→∞}(|O{A_1}|+|O{A_2}|+…+|O{A_n}|)$=$2+2\sqrt{2}$.分析 由已知的数列递推式得到数列{xn}的奇数项和偶数项均构成以1为首项,以$\frac{1}{2}$为公比的等比数列,数列{yn}的奇数项构成以1为首项,以$\frac{1}{2}$为公比的等比数列,偶数项均为0,然后分n为奇数和偶数求得|OAn|,再利用等比数列和的极限得答案.
解答 解:由$\left\{\begin{array}{l}{x_{n+1}}=\frac{1}{2}({x_n}+{y_n})\;\\{y_{n+1}}=\frac{1}{2}({x_n}-{y_n})\;\end{array}$,得xn=xn+1+yn+1,yn=xn+1-yn+1,
∴xn=xn+1+yn+1=xn+2+yn+2+xn+2-yn+2=2xn+2,
yn=xn+1-yn+1=xn+2+yn+2-xn+2+yn+2=2yn+2,
∴${x}_{n+2}=\frac{1}{2}{x}_{n}$,${y}_{n+2}=\frac{1}{2}{y}_{n}$,
∵x1=1,y1=1,∴x2=1,y2=0,
∴数列{xn}的奇数项和偶数项均构成以1为首项,以$\frac{1}{2}$为公比的等比数列,
则${x}_{n}=\left\{\begin{array}{l}{(\frac{1}{2})^{\frac{n-1}{2}},n为奇数}\\{(\frac{1}{2})^{\frac{n}{2}-1},n为偶数}\end{array}\right.$;
数列{yn}的奇数项构成以1为首项,以$\frac{1}{2}$为公比的等比数列,偶数项均为0,
${y}_{n}=\left\{\begin{array}{l}{(\frac{1}{2})^{\frac{n-1}{2}},n为奇数}\\{0,n为偶数}\end{array}\right.$.
∴当n为奇数时,$|O{A}_{n}|=\sqrt{2(\frac{1}{2})^{n-1}}$,
当n为偶数时,$|O{A}_{n}|=(\frac{1}{2})^{\frac{n}{2}-1}$,
∴$\lim_{n→∞}(|O{A_1}|+|O{A_2}|+…+|O{A_n}|)$
=$\sqrt{2}•\frac{1}{1-\frac{1}{2}}$$+\frac{1}{1-\frac{1}{2}}$=$2+2\sqrt{2}$.
故答案为:$2+2\sqrt{2}$.
点评 本题考查了数列递推式,考查了等比数列的通项公式,训练了数列极限的求法,体现了分类讨论的数学思想方法,是中档题.
A. | 若两直线a,b与直线l所成的角相等,那么a∥b | |
B. | 空间不同的三点A、B、C确定一个平面 | |
C. | 如果直线l∥平面α且l∥平面β,那么α∥β | |
D. | 若直线α与平面M没有公共点,则直线α∥平面M |
A. | y=x-1 | B. | y=ln(x+1) | C. | y=($\frac{1}{2}$)x | D. | y=x+$\frac{1}{x}$ |