题目内容
1.已知向量|$\overrightarrow{a}$|=$\sqrt{5}$,$\overrightarrow{b}$=(1,0),$\overrightarrow{c}$=(3,4),若$\overrightarrow{a}$•$\overrightarrow{b}$=1,($\overrightarrow{a}$+λ$\overrightarrow{b}$)∥$\overrightarrow{c}$,则实数λ=$\frac{1}{2}$或$-\frac{5}{2}$.分析 设出向量$\overrightarrow{a}$,利用已知条件列出方程,求解$\overrightarrow{a}$,然后通过共线关系求解即可.
解答 解:设$\overrightarrow{a}$=(x,y),向量|$\overrightarrow{a}$|=$\sqrt{5}$,$\overrightarrow{a}$•$\overrightarrow{b}$=1,$\overrightarrow{b}$=(1,0),可得:$\left\{\begin{array}{l}x=1\\{x}^{2}+{y}^{2}=5\end{array}\right.$,
解得$\left\{\begin{array}{l}x=1\\ y=±2\end{array}\right.$,
若$\left\{\begin{array}{l}x=1\\ y=2\end{array}\right.$,$\overrightarrow{c}$=(3,4),$\overrightarrow{a}$+λ$\overrightarrow{b}$=(1+λ,2),($\overrightarrow{a}$+λ$\overrightarrow{b}$)∥$\overrightarrow{c}$,得(1+λ)×4=3×2,$λ=\frac{1}{2}$.
若$\left\{\begin{array}{l}x=1\\ y=-2\end{array}\right.$,$\overrightarrow{c}$=(3,4),$\overrightarrow{a}$+λ$\overrightarrow{b}$=(1+λ,-2),($\overrightarrow{a}$+λ$\overrightarrow{b}$)∥$\overrightarrow{c}$,得(1+λ)×4=-3×2,$λ=-\frac{5}{2}$.
故答案为:$\frac{1}{2}$或$-\frac{5}{2}$.
点评 本题考查向量的数量积以及向量共线的充要条件的应用,考查计算能力.
A. | (-∞,1] | B. | [1,+∞) | C. | (-∞,2] | D. | [2,+∞) |