ÌâÄ¿ÄÚÈÝ
1£®Ò»¸öºÐ×Ó×°ÓÐÁùÕÅ¿¨Æ¬£¬ÉÏÃæ·Ö±ðд×ÅÈçÏÂÁù¸ö¶¨ÒåÓòΪRµÄº¯Êý£ºf1£¨x£©=x+1£¬f2£¨x£©=x2£¬${f_3}£¨x£©={log_2}£¨{\sqrt{{x^2}+1}+x}£©$£¬f4£¨x£©=sinx£¬f5£¨x£©=cosx+|x|£¬f6£¨x£©=x•sinx-2£®£¨1£©ÏÖ´ÓºÐ×ÓÖÐÈÎÈ¡Á½ÕÅ¿¨Æ¬£¬½«¿¨Æ¬Éϵĺ¯ÊýÏà¼ÓµÃÒ»¸öк¯Êý£¬ÇóËùµÃº¯ÊýÊÇÆ溯ÊýµÄ¸ÅÂÊ£»
£¨2£©ÏÖ´ÓºÐ×ÓÖнøÐÐÖðÒ»³éÈ¡¿¨Æ¬£¬ÇÒÿ´ÎÈ¡³öºó¾ù²»·Å»Ø£¬ÈôÈ¡µ½Ò»ÕżÇÓÐżº¯ÊýµÄ¿¨Æ¬ÔòÍ£Ö¹³éÈ¡£¬·ñÔò¼ÌÐø½øÐУ¬Çó³éÈ¡´ÎÊý¦ÎµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®
·ÖÎö £¨1£©¸ù¾Ýº¯ÊýµÄÐÔÖÊ£¬½áºÏ¹Åµä¸ÅÐ͵ĸÅÂʹ«Ê½½øÐÐÇó½â¼´¿É£»
£¨2£©¦Î¿ÉÈ¡1£¬2£¬3£¬4£¬5£¬¦Î=kµÄº¬ÒåΪǰk-1´ÎÈ¡³öµÄ²»ÊÇżº¯Êý£¬µÚk´ÎÈ¡³öµÄÊÇżº¯Êý£¬·Ö±ðÇó¸ÅÂÊ£¬Áгö·Ö²¼ÁУ¬ÔÙÇóÆÚÍû¼´¿É£®
½â´ð ½â£º£¨1£©f1£¨x£©=x+1Ϊ·ÇÆæ·Çżº¯Êý£¬f2£¨x£©=x2Ϊżº¯Êý£¬${f_3}£¨x£©={log_2}£¨{\sqrt{{x^2}+1}+x}£©$ΪÆ溯Êý£¬
f4£¨x£©=sinxΪÆ溯Êý£¬f5£¨x£©=cosx+|x|Ϊżº¯Êý£¬f6£¨x£©=x•sinx-2Ϊżº¯Êý£®
¼ÇʼþAΪ¡°ÈÎÈ¡Á½ÕÅ¿¨Æ¬£¬½«¿¨Æ¬Éϵĺ¯ÊýÏà¼ÓµÃµ½µÄº¯ÊýÊÇÆ溯Êý¡±£¬
Ôò·ÖÆ溯Êý+Æ溯Êý£¬ÓÐ1£¬
P£¨A£©=$\frac{1}{{C}_{6}^{2}}$=$\frac{1}{15}$£®
£¨2£©¦Î¿ÉÈ¡1£¬2£¬3£¬4£¬5£¬¦Î=kµÄº¬ÒåΪǰk-1´ÎÈ¡³öµÄ²»ÊÇżº¯Êý£¬µÚk´ÎÈ¡³öµÄÊÇżº¯Êý
P£¨¦Î=1£©=$\frac{2}{6}$=$\frac{1}{3}$£¬P£¨¦Î=2£©=$\frac{4¡Á2}{6¡Á5}$=$\frac{4}{15}$£¬
P£¨¦Î=3£©=$\frac{4¡Á3¡Á2}{6¡Á5¡Á4}$=$\frac{1}{5}$£¬
P£¨¦Î=4£©=$\frac{4¡Á3¡Á2¡Á2}{6¡Á5¡Á4¡Á3}$=$\frac{2}{15}$£¬
P£¨¦Î=5£©=$\frac{4¡Á3¡Á2¡Á1¡Á2}{6¡Á5¡Á4¡Á3¡Á2}$=$\frac{1}{15}$£¬
¹Ê¦ÎµÄ·Ö²¼ÁÐΪ
¦Î | 1 | 2 | 3 | 4 | 5 |
P | $\frac{1}{3}$ | $\frac{4}{15}$ | $\frac{1}{5}$ | $\frac{2}{15}$ | $\frac{1}{15}$ |
µãÆÀ ±¾Ì⿼²éº¯ÊýÆæżÐÔµÄÅжϡ¢ÅÅÁÐ×éºÏ¡¢¹Åµä¸ÅÐÍ¡¢ÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁС¢ÆÚÍûµÈ֪ʶ£¬¼°ÀûÓÃËùѧ֪ʶ½â¾öÎÊÌâµÄÄÜÁ¦£®
A£® | 2x¡Ày=0 | B£® | x¡À2y=0 | C£® | 4x¡À3y=0 | D£® | 3x¡À4y=0 |
A£® | ÃüÌâ¡°Èôx=y£¬Ôòsinx=siny¡±µÄÄæ·ñÃüÌâΪÕæÃüÌâ | |
B£® | ¡°x=-1¡±ÊÇ¡°x2-5x-6=0¡±µÄ±ØÒª²»³ä·ÖÌõ¼þ | |
C£® | ÃüÌâ¡°Èôx2=1£¬Ôòx=1¡±µÄ·ñÃüÌâΪ£º¡°Èôx2=1£¬Ôòx¡Ù1¡± | |
D£® | ÃüÌâ¡°?x¡ÊRʹµÃx2+x+1£¼0¡±µÄ·ñ¶¨ÊÇ£º¡°¡°?x¡ÊR¾ùÓÐx2+x+1£¼0¡± |