题目内容

【题目】已知函数f(x)=lg(ax﹣bx)(a>1>b>0).
(1)求f(x)的定义域;
(2)若f(x)在(1,+∞)上递增且恒取正值,求a,b满足的关系式.

【答案】
(1)解:∵ax﹣bx>0,

∴( x>1,

∵a>1>b>0

∴x>0,

即f(x)的定义域为(0,+∞)


(2)解:因为f(x)是增函数,所以当x∈(1,+∞)时,f(x)>f(1),

∴只需f(1)=lg(a﹣b)≥0,

∴a﹣b≥1


【解析】(1)要求ax﹣bx>0,转换为( x>1,利用指数函数性质求解;(2)由增函数可得f(x)>f(1),只需f(1)=lg(a﹣b)≥0即可.
【考点精析】本题主要考查了函数的定义域及其求法的相关知识点,需要掌握求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数;②是分式函数时,定义域是使分母不为零的一切实数;③是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网