题目内容
是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.我国标准采用世卫组织设定的最宽限值,日均值在35微克/立方米以下空气质量为一级;在35微克/立方米75微克/立方米之间空气质量为二级;在75微克/立方米及其以上空气质量为超标.
某试点城市环保局从该市市区2011年全年每天的监测数据中随机抽取6天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶),若从这6天的数据中随机抽出2天.
(Ⅰ)求恰有一天空气质量超标的概率;
(Ⅱ)求至多有一天空气质量超标的概率.
(Ⅰ);(Ⅱ).
解析试题分析:由茎叶图知:6天有4天空气质量未超标,有2天空气质量超标. …………2分
记未超标的4天为,超标的两天为.则从6天中抽取2天的所有情况为:,,,,,,,,,,,,,,,基本事件数为15.…………4分
(Ⅰ)记 “6天中抽取2天,恰有1天空气质量超标”为事件,可能结果为:,,,,,,,,基本事件数为.
∴;……………6分
(Ⅱ)记“至多有一天空气质量超标”为事件,
“2天都超标”为事件,其可能结果为,…………………………8分
故,…………………………………………………………10分
∴. …………………………………12分
考点:本题主要考查茎叶图,古典概型概率的计算。
点评:中档题,统计中的抽样方法,频率直方图,概率计算及分布列问题,是高考必考内容及题型。古典概型概率的计算问题,关键是明确基本事件数,往往借助于“树图法”,做到不重不漏。(II)中利用了相互对立事件的概率公式,简化了计算过程。
某校为了解高二学生、两个学科学习成绩的合格情况是否有关, 随机抽取了该年级一次期末考试、两个学科的合格人数与不合格人数,得到以下22列联表:
| 学科合格人数 | 学科不合格人数 | 合计 |
学科合格人数 | 40 | 20 | 60 |
学科不合格人数 | 20 | 30 | 50 |
合计 | 60 | 50 | 110 |
(2)从“学科合格”的学生中任意抽取2人,记被抽取的2名学生中“学科合格”的人数为,求的数学期望.
附公式与表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
某中学将100名高一新生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A、B两种不同的教学方式分别在甲、乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师分别从两个班级中各随机抽取20名学生的成绩进行统计,作出茎叶图如下.记成绩不低于90分者为“成绩优秀”.
(1)在乙班样本的20个个体中,从不低于86分的成绩中随机抽取2个,求抽出的2个至多一个“成绩优秀”的概率;
(2)由以上统计数据填写下面列联表,并判断是否有90%的把握认为:“成绩优秀”与教学方式有关.
| 甲班 (A方式) | 乙班 (B方式) | 总计 |
成绩优秀 | | | |
成绩不优秀 | | | |
总计 | | | |
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
k | 1.323 | 2.072 | 2. 706 | 3. 841 | 5. 024 |
某校为了解学生的学科学习兴趣,对初高中学生做了一个喜欢数学和喜欢语文的抽样调查,随机抽取了名学生,相关的数据如下表所示:
| 数学 | 语文 | 总计 |
初中 | |||
高中 | |||
总计 |
(2) 在(1)中抽取的名学生中任取名,求恰有名初中学生的概率.