题目内容
已知奇函数f(x)在定义域[-2,2]上单调递减,求满足f(1-m)+f(1-m2)<0的实数m的取值范围.
[-1,1)
解析
求下列各题中的函数f(x)的解析式.(1) 已知f(+2)=x+4,求f(x);(2) 已知f=lgx,求f(x);(3) 已知函数y=f(x)满足2f(x)+f=2x,x∈R且x≠0,求f(x);(4) 已知f(x)是二次函数,且满足f(0)=1,f(x+1)=f(x)+2x,求f(x).
判断函数f(x)=ex+在区间(0,+∞)上的单调性.
已知函数(为常数,且).(1)当时,求函数的最小值(用表示);(2)是否存在不同的实数使得,,并且,若存在,求出实数的取值范围;若不存在,请说明理由.
已知定义域为R的函数f(x)=是奇函数.(1)求a,b的值.(2)用定义证明f(x)在(-∞,+∞)上为减函数.(3)若对于任意t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的范围.
设函数f(x)=a为常数且a∈(0,1).(1)当a=时,求f; (2)若x0满足f[f(x0)]=x0,但f(x0)≠x0,则称x0为f(x)的二阶周期点.证明函数f(x)有且仅有两个二阶周期点,并求二阶周期点x1,x2;(3)对于(2)中的x1,x2,设A(x1,f[f(x1)]),B(x2,f[f(x2)]),C(a2,0),记△ABC的面积为S(a),求S(a)在区间[,]上的最大值和最小值.
已知,其中是常数.(1))当时, 是奇函数;(2)当时,的图像上不存在两点、,使得直线平行于轴.
学校某研究性学习小组在对学生上课注意力集中情况的调查研究中,发现其在40分钟的一节课中,注意力指数与听课时间(单位:分钟)之间的关系满足如图所示的图像,当时,图像是二次函数图像的一部分,其中顶点,过点;当时,图像是线段,其中,根据专家研究,当注意力指数大于62时,学习效果最佳.(1)试求的函数关系式;(2)教师在什么时段内安排内核心内容,能使得学生学习效果最佳?请说明理由.
已知函数的定义域为,且的图象连续不间断. 若函数满足:对于给定的(且),存在,使得,则称具有性质.(Ⅰ)已知函数,,判断是否具有性质,并说明理由;(Ⅱ)已知函数 若具有性质,求的最大值;(Ⅲ)若函数的定义域为,且的图象连续不间断,又满足,求证:对任意且,函数具有性质.