题目内容
【题目】如图,在三棱锥中,,,,,,且在平面上的射影在线段上.
(Ⅰ)求证:;
(Ⅱ)设二面角为,求的余弦值.
【答案】(Ⅰ)详见解析(Ⅱ)
【解析】
试题分析:(Ⅰ)证明线线垂直,一般利用线面垂直性质定理进行论证;因为在平面上的射影在线段上,所以,又根据勾股定理可得,因此(Ⅱ)求二面角,一般方法为利用空间向量,即先根据题意建立空间直角坐标系,设立各点坐标,利用方程组解出各面法向量,再根据向量数量积求法向量夹角,最后根据二面角与法向量之间相等或互补的关系求二面角
试题解析:(Ⅰ)证明:,,,
,
,.
(Ⅱ)解:(法一)作垂足为,连接,
则为二面角的平面角.
在中,,,,
,,,
在中,,,
,
,又,,又,,
.
(法二)在中,,,,
,,,
在中,,,
又,,又,,
如图建立直角坐标系,
,,,,
平面的法向量为,
平面的法向量为,
.
【题目】某快递公司收取快递费用的标准是:重量不超过的包裹收费元;重量超过的包裹,除收费元之外,超过的部分,每超出(不足,按计算)需再收元.该公司将最近承揽的件包裹的重量统计如下:
包裹重量(单位: ) | |||||
包裹件数 |
公司对近天,每天揽件数量统计如下表:
包裹件数范围 | |||||
包裹件数 (近似处理) | |||||
天数 |
以上数据已做近似处理,并将频率视为概率.
(1)计算该公司未来天内恰有天揽件数在之间的概率;
(2)(i)估计该公司对每件包裹收取的快递费的平均值;
(ii)公司将快递费的三分之一作为前台工作人员的工资和公司利润,剩余的用作其他费用.目前前台有工作人员人,每人每天揽件不超过件,工资元.公司正在考虑是否将前台工作人员裁减人,试计算裁员前后公司每日利润的数学期望,并判断裁员是否对提高公司利润更有利?
【题目】如表中数表为“森德拉姆筛”,其特点是每行每列都成等差数列,记第i行,第j列的数为aij,则数字41在表中出现的次数为( )
2 | 3 | 4 | 5 | 6 | 7 | … |
3 | 5 | 7 | 9 | 11 | 13 | … |
4 | 7 | 10 | 13 | 16 | 19 | … |
5 | 9 | 13 | 17 | 21 | 25 | … |
6 | 11 | 16 | 21 | 26 | 31 | … |
7 | 13 | 19 | 25 | 31 | 37 | … |
… | … | … | … | … | … | … |
A.4B.8C.9D.12