题目内容
【题目】如图:在四棱锥中,平面.,,.点是与的交点,点在线段上且.
(1)证明:平面;
(2)求直线与平面所成角的正弦值;
(3)求二面角的正切值.
【答案】(1)证明见解析;(2);(3).
【解析】
(1)推导出,在正三角形中,,从而.
进而,由此能证明平面;
(2)分别以为轴,轴,轴建立如图的空间直角坐标系,求出与平面的法向量,进而利用向量的夹角公式可求出直线与平面所成角的正弦值;
(3)求出面与面的法向量,进而利用向量的夹角公式可求出二面角的平面角的余弦值,再转化为正切值即可.
证明:(1)∵在四棱锥中,平面.,
,.点是与的交点,
,
∴在正三角形中,,
在中,∵是中点,,
,又,
,
,
∵点在线段上且,
,
平面,平面,
∴平面.
(2),
分别以为轴,轴,轴建立如图的空间直角坐标系,
,
,
,
设平面的法向量,
则,取,得,
,
设直线与平面所成角为,
则,
故直线与平面所成角的正弦值为;
(3)由(2)可知,为平面的法向量,
,
设平面的法向量为,
则,即,
令,解得,
设二面角的平面角为,则,
故二面角的正切值为.
练习册系列答案
相关题目
【题目】某企业生产甲、乙两种产品均需要,两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲、乙产品可获得利润分别为3万元、4万元,则该企业每天可获得最大利润为( )
甲 | 乙 | 原料限额 | |
(吨) | 3 | 2 | 10 |
(吨) | 1 | 2 | 6 |
A. 10万元B. 12万元C. 13万元D. 14万元