题目内容

11.已知在数列{an}满足a1=1,an=an+1(1+2an )(n∈N*).
(1)数列{1an1an}是等差数列;
(2)若a1a2 +a2a3 +…+anan+116331633,求n的取值范围.

分析 (1)通过对an=an+1(1+2an )(n∈N*)变形可知1an+11an+1=1an1an+2,进而可知数列{1an1an}是以1为首项、2为公差的等差数列;
(2)通过(1)可知1an1an=2n-1,裂项可知anan+1=121212n112n1-12n+112n+1),并项相加可知a1a2 +a2a3 +…+anan+1=n2n+1n2n+1,从而解不等式n2n+1n2n+116331633即可.

解答 (1)证明:∵an=an+1(1+2an )(n∈N*),
1an+11an+1=1+2anan1+2anan=1an1an+2,
1an+11an+1-1an1an=2,
又∵1a11a1=1,
∴数列{1an1an}是以1为首项、2为公差的等差数列;
(2)解:由(1)可知1an1an=1+2(n-1)=2n-1,
∴anan+1=12n12n+112n12n+1=121212n112n1-12n+112n+1),
∴a1a2 +a2a3 +…+anan+1=1212(1-1313+1313-1515+…+12n112n1-12n+112n+1
=1212(1-12n+112n+1
=n2n+1n2n+1
又∵a1a2 +a2a3 +…+anan+116331633
n2n+1n2n+116331633
解得:n>16,
∴n的取值范围是:(16,+∞).

点评 本题考查数列的通项,注意解题方法的积累,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网