题目内容
【题目】如图,AB是圆O的直径,点C是圆O上异于A,B的点,直线PC⊥平面ABC,E,F分别是PA,PC的中点.
(1)记平面BEF与平面ABC的交线为l,试判断直线l与平面PAC的位置关系,并加以证明;
(2)设AB=PC=2,BC=1,求三棱锥P-BEF的体积.
【答案】(1)证明见解析;(2)
【解析】试题分析:(I)直线l∥平面PAC.连接EF,利用三角形的中位线定理可得,EF∥AC;利用线面平行的判定定理即可得到EF∥平面ABC.由线面平行的性质定理可得EF∥l.再利用线面平行的判定定理即可证明直线l∥平面PAC.(II)利用等积法求体积.
试题解析:
解 (1)直线l∥平面PAC.证明如下:
连接EF,因为E,F分别是PA,PC的中点,所以EF∥AC.
又EF平面ABC,且AC平面ABC,所以EF∥平面ABC.
而EF平面BEF,且平面BEF∩平面ABC=l,所以EF∥l.因为l平面PAC,EF平面PAC,所以直线l∥平面PAC.
(2).
练习册系列答案
相关题目
【题目】某社区为丰富居民节日活动,组织了“迎新春”象棋大赛,已知报名的选手情况统计如下表:
组别 | 男 | 女 | 总计 |
中年组 | 91 | ||
老年组 | 16 |
已知中年组女性选手人数是仅比老年组女性选手人数多2人,若对中年组和老年组分别利用分层抽样的方法抽取部分报名者参加比赛,已知老年组抽取了5人,其中女性3人,中年组抽取了7人.
(1)求表格中的数据;
(2)若从选出的中年组的选手中随机抽取两名进行比赛,求至少有一名女性选手的概率.