ÌâÄ¿ÄÚÈÝ
9£®ÒÑÖªÊýÁÐ{an}£¬{bn}ÖУ¬a1=1£¬bn=£¨1-$\frac{{{a}_{n}}^{2}}{{{a}_{n+1}}^{2}}$£©•$\frac{1}{{a}_{n+1}}$£¬n¡ÊN*£¬ÊýÁÐ{bn}µÄÇ°nÏîºÍSn£®£¨1£©Èôan=2n-1£¬ÇóSn£»
£¨2£©ÊÇ·ñ´æÔڵȱÈÊýÁÐ{an}ʹbn+2=Sn¶ÔÈÎÒân¡ÊN*ºã³ÉÁ¢£¿Èô´æÔÚ£¬Çó³öËùÓÐÂú×ãÌõ¼þµÄÊýÁÐ{an}µÄͨÏʽ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
·ÖÎö £¨1£©ÒÀÌâÒ⣬¿ÉÇóµÃbn=£¨1-$\frac{{{a}_{n}}^{2}}{{{a}_{n+1}}^{2}}$£©•$\frac{1}{{a}_{n+1}}$=$\frac{3}{{2}^{n+2}}$£¬ÀûÓõȱÈÊýÁеÄÇóºÍ¹«Ê½¿ÉµÃÊýÁÐ{bn}µÄÇ°nÏîºÍSn£»
£¨2£©Éè´æÔÚ¸ö¹«±ÈΪqµÄµÈ±ÈÊýÁÐ{an}ʹbn+2=Sn¶ÔÈÎÒân¡ÊN*ºã³ÉÁ¢£¬ÀûÓÃn=1ʱ£¬b3=b1¿ÉÇóµÃq=¡À1£¬¼ìÑé¼´¿ÉµÃµ½´ð°¸£®
½â´ð ½â£º£¨1£©¡ßa1=1£¬an=2n-1£¬
¡à$\frac{1}{{a}_{n+1}}$=$\frac{1}{{2}^{n}}$£¬$\frac{{a}_{n}}{{a}_{n+1}}$=$\frac{{2}^{n-1}}{{2}^{£¨n-1£©+1}}$=$\frac{1}{2}$£¬
¡à$\frac{{{a}_{n}}^{2}}{{{a}_{n+1}}^{2}}$=$\frac{1}{4}$£¬
¡àbn=£¨1-$\frac{{{a}_{n}}^{2}}{{{a}_{n+1}}^{2}}$£©•$\frac{1}{{a}_{n+1}}$=£¨1-$\frac{1}{4}$£©•$\frac{1}{{2}^{n}}$=$\frac{3}{{2}^{n+2}}$£¬
ÏÔÈ»£¬ÊýÁÐ{bn}ΪÊ×ÏîΪ$\frac{3}{8}$£¬¹«±ÈΪ$\frac{1}{2}$µÄµÈ±ÈÊýÁУ¬
¡àSn=b1+b2+¡+bn=$\frac{\frac{3}{8}[1-£¨\frac{1}{2}£©^{n}]}{1-\frac{1}{2}}$=$\frac{3}{4}$-$\frac{3}{{2}^{n+2}}$£¨n¡ÊN*£©£®
£¨2£©Éè´æÔÚ¸ö¹«±ÈΪqµÄµÈ±ÈÊýÁÐ{an}ʹbn+2=Sn¶ÔÈÎÒân¡ÊN*ºã³ÉÁ¢£¬
Ôòn=1ʱ£¬b1+2=S1=b1£¬¼´b3=£¨1-$\frac{1}{{q}^{2}}$£©•$\frac{1}{{a}_{4}}$=£¨1-$\frac{1}{{q}^{2}}$£©•$\frac{1}{{a}_{2}}$£¬¼´£¨1-q2£©£¨$\frac{1}{{q}^{3}}$-$\frac{1}{q}$£©=0£¬
½âµÃ£ºq=¡À1£¬
¾¼ìÑ飬µ±q=¡À1ʱ£¬bn=0£¬Âú×ãbn+2=Sn¶ÔÈÎÒân¡ÊN*ºã³ÉÁ¢£¬
¹Ê´æÔÚ¹«±ÈΪ¡À1µÄµÈ±ÈÊýÁÐ{an}£¬an=1»ò£¨-1£©n-1£¬Ê¹bn+2=Sn¶ÔÈÎÒân¡ÊN*ºã³ÉÁ¢£®
µãÆÀ ±¾Ì⿼²éÊýÁеÝÍƹØϵʽµÄÓ¦Ó㬿¼²éµÈ±ÈÊýÁеÄÐÔÖʼ°ÇóºÍ¹«Ê½µÄÓ¦Ó㬿¼²éÍÆÀíÓëÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
A£® | ³äÒªÌõ¼þ | B£® | ³ä·Öµ«²»±ØÒªÌõ¼þ | ||
C£® | ±ØÒªµ«²»³ä·ÖÌõ¼þ | D£® | ¼È·Ç³ä·ÖÒ²·Ç±ØÒªÌõ¼þ |
A£® | a£¬b£¬c | B£® | b£¬a£¬c | C£® | a£¬c£¬b | D£® | c£¬a£¬b |