题目内容

9.方程(lga+lgx)•(lga+2lgx)=4有两个小于1的正根α,β.
(1)若lgα+lgβ=-$\frac{9}{2}$,求a的值;
(2)若|lgα-lgβ|≤2$\sqrt{3}$,求实数a的取值范围.

分析 (1)将已知方程转化为一般式方程,然后由根与系数的关系来求a的值;
(2)利用根与系数的关系和对数的运算性质将|lgα-lgβ|≤2$\sqrt{3}$转化为关于a的不等式,通过解不等式求得a的取值范围.

解答 解:由方程(lga+lgx)•(lga+2lgx)=4有两个小于1的正根α,β,得
2lg2x+3lgalgx+lg2a-4=0.
(1)∵α,β是方程(lga+lgx)•(lga+2lgx)=4,即2lg2x+3lgalgx+lg2a-4=0的两个正根,
∴lgα+lgβ=-$\frac{3}{2}$lga=-$\frac{9}{2}$,
∴lga=3,
则a=1000;
(2)∵lgα+lgβ=-$\frac{3}{2}$lga,lgα•lgβ=$\frac{l{g}^{2}a-4}{2}$,
∴|lgα-lgβ|2=(lgα+lgβ)2-4lgα•lgβ≤12,
∴$\frac{9}{4}$lg2a-2lg2a+8≤12,
解得-4≤lga≤4,
又∵方程(lga+lgx)•(lga+2lgx)=4有两个小于1的正根α,β,
∴lga>0且lgα•lgβ=$\frac{l{g}^{2}a-4}{2}$>0,
解得lga>2,
∴2<lga≤4
∴实数a的取值范围是(100,10000].

点评 本题考查了对数的运算性质和根的存在性及根的个数判断.还考查运算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网