题目内容
已知函数y=f(x)的图象关于y轴对称,且满足f(x-2)=ax2-(a-3)x+(a-2).(Ⅰ)求函数f(x)的解析式;
(Ⅱ)g(x)=f[f(x)],F(x)=pg(x)+f(x),问是否存在p(p<0)使F(x)在区间(-∞,-3]上是减函数,且在区间(-3,0)内是增函数?试证明你的结论.
分析:(1)令x-2=t由整体换元的方法求函数f(x)的解析式.
(2)先根据(1)表示出F(x)的解析式,然后假设存在p使得满足条件,由减函数的定义或由减函数对应的导数小于0求出p的值.
(2)先根据(1)表示出F(x)的解析式,然后假设存在p使得满足条件,由减函数的定义或由减函数对应的导数小于0求出p的值.
解答:解:(Ⅰ)令x-2=t,则x=t+2.
由于f(x-2)=ax2-(a-3)x+(a-2),
所以f(t)=a(t+2)2-(a-3)(t+2)+(a-2)
=at2+3(a+1)t+(3a+4)
∴f(x)=ax2+3(a+1)x+(3a+4)
∵y=f(x)的图象关于y轴对称
∴a≠0且3(a+1)=0,即a=-1
故f(x)=-x2+1
(Ⅱ)g(x)=f[f(x)]=-(-x2+1)2+1
=-x4+2x2F(x)=pg(x)+f(x)=-px4+(2p-1)x2+1
设存在p(p<0),使F(x)满足题目要求,
则当-∞<x1<x2≤-3时,
F(x)是减函数,即F(x1)-F(x2)
=(x12-x22)[2p-1-p(x12+x22)]>0
由假设-x1>-x2≥3>0,∴x12>x22>9
∴2p-1-p(x12+x22)>0 ①
又p<0,x12+x22>18∴-p(x12+x22)>-18p
∴2p-1-p(x12+x22)>2p-1-18p=-16p-1
要使①式恒成立,只须-16p-1≥0即p≤-
又当-3<x1<x2<0时,F(x)是增函数,
即F(x1)-F(x2)<0,也就是2p-1-p(x12+x22)<0 ②
此时0<-x2<-x1<3.x12+x22<18-p(x12+x22)<-18p,
2p-1-p(x12+x22)<-16p-1
要使②式恒成立,只须-16p-1≤0即p≥-
故存在p=-
满足题目要求.
另解:依题意F(-3)是F(x)的极小值,∴F′(-3)=0.
∵F'(x)=-4px3+2(2p-1)x,∴-4p(-3)3+2(2p-1)(-3)=0,
即p=-
.当p=-
时,
F(x)=
x4-
x2+1,F′(x)=
x3-
x=
x(x2-9)
∴当x<-3时,F'(x)<0,F(x)在(-∞,-3]上是减函数;
当x∈(-3,0)时,F(x)是增函数.
故存在p=-
满足题目要求.
由于f(x-2)=ax2-(a-3)x+(a-2),
所以f(t)=a(t+2)2-(a-3)(t+2)+(a-2)
=at2+3(a+1)t+(3a+4)
∴f(x)=ax2+3(a+1)x+(3a+4)
∵y=f(x)的图象关于y轴对称
∴a≠0且3(a+1)=0,即a=-1
故f(x)=-x2+1
(Ⅱ)g(x)=f[f(x)]=-(-x2+1)2+1
=-x4+2x2F(x)=pg(x)+f(x)=-px4+(2p-1)x2+1
设存在p(p<0),使F(x)满足题目要求,
则当-∞<x1<x2≤-3时,
F(x)是减函数,即F(x1)-F(x2)
=(x12-x22)[2p-1-p(x12+x22)]>0
由假设-x1>-x2≥3>0,∴x12>x22>9
∴2p-1-p(x12+x22)>0 ①
又p<0,x12+x22>18∴-p(x12+x22)>-18p
∴2p-1-p(x12+x22)>2p-1-18p=-16p-1
要使①式恒成立,只须-16p-1≥0即p≤-
1 |
16 |
又当-3<x1<x2<0时,F(x)是增函数,
即F(x1)-F(x2)<0,也就是2p-1-p(x12+x22)<0 ②
此时0<-x2<-x1<3.x12+x22<18-p(x12+x22)<-18p,
2p-1-p(x12+x22)<-16p-1
要使②式恒成立,只须-16p-1≤0即p≥-
1 |
16 |
故存在p=-
1 |
16 |
另解:依题意F(-3)是F(x)的极小值,∴F′(-3)=0.
∵F'(x)=-4px3+2(2p-1)x,∴-4p(-3)3+2(2p-1)(-3)=0,
即p=-
1 |
16 |
1 |
16 |
F(x)=
1 |
16 |
9 |
8 |
1 |
4 |
9 |
4 |
1 |
4 |
∴当x<-3时,F'(x)<0,F(x)在(-∞,-3]上是减函数;
当x∈(-3,0)时,F(x)是增函数.
故存在p=-
1 |
16 |
点评:本题主要考查求函数解析式和根据函数单调性求值的问题.求函数的解析式时一般用换元法、凑配法、方程法等.函数的单调性经常与函数的导数值的正负联系起来,即当导数大于0时函数单调递增,当导数小于0时函数单调递减.
练习册系列答案
相关题目