题目内容

【题目】在平面直角坐标系xoy中,圆C的方程为x2+y2﹣8x+15=0,若直线y=kx+2上至少存在一点,使得以该点为圆心,半径为1的圆与圆C有公共点,则k的最小值是(  )
A.-
B.-
C.-
D.-

【答案】A
【解析】∵圆C的方程为x2+y2﹣8x+15=0,整理得:(x﹣4)2+y2=1,即圆C是以(4,0)为圆心,1为半径的圆;
又直线y=kx+2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,
∴只需圆C:(x﹣4)2+y2=4与直线y=kx+2有公共点即可.
设圆心C(4,0)到直线y=kx+2的距离为d,
则d=≤2,即3k2≤﹣4k,
∴﹣≤k≤0.
∴k的最小值是-
故选A.
化圆C的方程为(x﹣4)2+y2=1,求出圆心与半径,由题意,只需(x﹣4)2+y2=4与直线y=kx+2有公共点即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网