题目内容
【题目】已知直线, .
(1)当时,直线过与的交点,且它在两坐标轴上的截距相反,求直线的方程;
(2)若坐标原点到直线的距离为,判断与的位置关系.
【答案】(1)或;(2)或
【解析】试题分析:(1)联立解得与的交点为(-21,-9),当直线过原点时,直线的方程为;当直线不过原点时,设的方程为,将(-21,-9)代入得,解得所求直线方程(2)设原点到直线的距离为,则,解得: 或,分情况根据斜率关系判断两直线的位置关系;
试题解析:
解:(1)联立解得即与的交点为(021,-9).
当直线过原点时,直线的方程为;
当直线不过原点时,设的方程为,将(-21,-9)代入得,
所以直线的方程为,故满足条件的直线方程为或.
(2)设原点到直线的距离为,
则,解得: 或,
当时,直线的方程为,此时;
当时,直线的方程为,此时.
练习册系列答案
相关题目
【题目】4月23日是“世界读书日”,某中学在此期间开展了一系列的读书教育活动,为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查,下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图,若将日均课外阅读时间不低于60分钟的学生称为“读书谜”,低于60分钟的学生称为“非读书谜”
(1)求的值并估计全校3000名学生中读书谜大概有多少?(将频率视为概率)
(2)根据已知条件完成下面2×2的列联表,并据此判断是否有99%的把握认为“读书谜”与性别有关?
非读书迷 | 读书迷 | 合计 | |
男 | 15 | ||
女 | 45 | ||
合计 |
附:.
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |