题目内容
【题目】设两点在抛物线上,是AB的垂直平分线,
(1)当且仅当取何值时,直线经过抛物线的焦点F?证明你的结论;
(2)若,弦AB是否过定点,若过定点,求出该定点,若不过定点,说明理由.
【答案】(1),证明见解析 (2)过定点,(0,)
【解析】
(1)对直线的斜率是否存在进行讨论,利用中垂线的性质列方程组求出直线的截距b的范围,从而得出结论;
(2)设AB的方程为:y=kx+b,联立方程组,根据根与系数的关系和求出b的值,从而得到定点的坐标.
解:(1)∵抛物线,即,
∴焦点为
(i)直线的斜率不存在时,显然有
(ii)直线的斜率存在时,设为k,截距为b
即直线:y=kx+b,由已知得:
即的斜率存在时,不可能经过焦点
所以当且仅当=0时,直线经过抛物线的焦点F
(2)设直线:y=kx+b,
联立方程组:
若,则
过定点(0,). ,
因此直线AB过定点.
【题目】为迎接2022年北京冬季奥运会,普及冬奥知识,某校开展了“冰雪答题王”冬奥知识竞赛活动.现从参加冬奥知识竞赛活动的学生中随机抽取了100名学生,将他们的比赛成绩(满分为100分)分为6组:,,,,,,得到如图所示的频率分布直方图.
(1)求的值;
(2)估计这100名学生的平均成绩(同一组中的数据用该组区间的中点值为代表);
(3)在抽取的100名学生中,规定:比赛成绩不低于80分为“优秀”,比赛成绩低于80分为“非优秀”.请将下面的2×2列联表补充完整,并判断是否有99.9%的把握认为“比赛成绩是否优秀与性别有关”?
优秀 | 非优秀 | 合计 | |
男生 | 40 | ||
女生 | 50 | ||
合计 | 100 |
参考公式及数据:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【题目】某个地区计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水的年入流量(年入流量:一年内上游来水与库区降水之和,单位:十亿立方米)都在4以上,其中,不足8的年份有10年,不低于8且不超过12的年份有35年,超过12的年份有5年,将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.
(1)求未来4年中,至多有1年的年入流量超过12的概率;
(2)若水的年入流量与其蕴含的能量(单位:百亿万焦)之间的部分对应数据为如下表所示:
年入流量 | 6 | 8 | 10 | 12 | 14 |
蕴含的能量 | 1.5 | 2.5 | 3.5 | 5 | 7.5 |
用最小二乘法求出关于的线性回归方程;(回归方程系数用分数表示)
(3)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量限制,并有如下关系:
年入流量 | |||
发电机最多可运行台数 | 1 | 2 | 3 |
若某台发电机运行,则该台年利润为5000万元;若某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?
附:回归方程系数公式:,.