题目内容

如图,边长为2的正方形A1ACC1绕直线CC1旋转90°得到正方形B1BCC1,D为CC1的中点,E为A1B的中点,G为△ADB的重心.
(1)求直线EG与直线BD所成的角;
(2)求直线A1B与平面ADB所成的角的正弦值.
由题设CC1⊥AC,CC1⊥BC,AC⊥BC
所以,以C为坐标原点,CA,CB,CC1所在直线为x,y,z轴,建立空间直角坐标系
则C(0,0,0),A(2,0,0),B(0,2,0),C1(0,0,2),A1(2,0,2),B1(0,2,2),
所以D(0,0,1),E(1,1,1),G(
2
3
2
3
1
3
)
.(2分)
(1)
EG
=(-
1
3
,-
1
3
,-
2
3
)
BD
=(0,-2,1)
(4分)
所以
EG
BD
=
2
3
-
2
3
=0

EG
BD

所以,直线EG与直线BD所成的角为
π
2
.(5分)
(2)
A1B
=(-2,2,-2)
(6分)
AB
=(-2,2,0)
AD
=(-2,0,1)

n
=(x0y0z0)
为平面ABD的一个法向量
n
AB
=-2x0+2y0=0
n
AD
=-2x0+y0=0

y0=x0
z0=2x0

n
=(1,1,2)
.(8分)
设A1B与平面ADB所成的角为θ
sinθ=|cos?
A1B,
n
>|=
4
2
3
6
=
2
3

即:A1B与平面ADB所成的角为正弦值为
2
3
.(10分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网