题目内容

已知函数f(x)=-x2+2ex+m-1,g(x)=x+ (x>0).
(1)若g(x)=m有实数根,求m的取值范围;
(2)确定m的取值范围,使得g(x)-f(x)=0有两个相异实根.
(1)m≥2e
(2)(-e2+2e+1,+∞)
解:(1)∵g(x)=x+≥2=2e等号成立的条件是x=e,故g(x)的值域是[2e,+∞),因此,只需m≥2e,g(x)=m就有实数根.

(2)若g(x)-f(x)=0有两个相异的实根,即g(x)与f(x)的图象有两个不同的交点,作出g(x)与f(x)的大致图象.
∵f(x)=-x2+2ex+m-1=-(x-e)2+m-1+e2
∴其图象的对称轴为x=e,开口向下,最大值为m-1+e2
故当m-1+e2>2e,即m>-e2+2e+1时,g(x)与f(x)有两个交点,
即g(x)-f(x)=0有两个相异实根.
∴m的取值范围是(-e2+2e+1,+∞).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网