题目内容
已知函数f(x)=-x2+2ex+m-1,g(x)=x+
(x>0).
(1)若g(x)=m有实数根,求m的取值范围;
(2)确定m的取值范围,使得g(x)-f(x)=0有两个相异实根.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052721818429.png)
(1)若g(x)=m有实数根,求m的取值范围;
(2)确定m的取值范围,使得g(x)-f(x)=0有两个相异实根.
(1)m≥2e
(2)(-e2+2e+1,+∞)
(2)(-e2+2e+1,+∞)
解:(1)∵g(x)=x+
≥2
=2e等号成立的条件是x=e,故g(x)的值域是[2e,+∞),因此,只需m≥2e,g(x)=m就有实数根.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240527218967583.png)
(2)若g(x)-f(x)=0有两个相异的实根,即g(x)与f(x)的图象有两个不同的交点,作出g(x)与f(x)的大致图象.
∵f(x)=-x2+2ex+m-1=-(x-e)2+m-1+e2,
∴其图象的对称轴为x=e,开口向下,最大值为m-1+e2.
故当m-1+e2>2e,即m>-e2+2e+1时,g(x)与f(x)有两个交点,
即g(x)-f(x)=0有两个相异实根.
∴m的取值范围是(-e2+2e+1,+∞).
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052721818429.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052721880397.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240527218967583.png)
(2)若g(x)-f(x)=0有两个相异的实根,即g(x)与f(x)的图象有两个不同的交点,作出g(x)与f(x)的大致图象.
∵f(x)=-x2+2ex+m-1=-(x-e)2+m-1+e2,
∴其图象的对称轴为x=e,开口向下,最大值为m-1+e2.
故当m-1+e2>2e,即m>-e2+2e+1时,g(x)与f(x)有两个交点,
即g(x)-f(x)=0有两个相异实根.
∴m的取值范围是(-e2+2e+1,+∞).
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目