题目内容
在△ABC中,角A、B、C的对边分别为a、b、c,若
(1)求证:A=B;(2)求边长c的值;(3)若求△ABC的面积.
(1)求证:A=B;(2)求边长c的值;(3)若求△ABC的面积.
(Ⅰ) A=B (Ⅱ) (III)
:(1)∵ ∴bccosA=accosB,即bcosA=acosB.-------2
由正弦定理得 sinBcosA=sinAcosB, ∴sin(A-B)=0.---------------3
∵-π<A-B<π, ∴A-B=0,∴A=B.----------------------4
(2)∵ ∴bccosA=1. 由余弦定理得,即b2+c2-a2=2.----6
∵由(1)得a=b,∴c2=2,∴. ------8
(3)∵=,∴ 即c2+b2+2=6,--------10
∴c2+b2=4. ∵c2=2, ∴b2=2,即b=. ∴△ABC为正三角形. -----------11
∴-----12
由正弦定理得 sinBcosA=sinAcosB, ∴sin(A-B)=0.---------------3
∵-π<A-B<π, ∴A-B=0,∴A=B.----------------------4
(2)∵ ∴bccosA=1. 由余弦定理得,即b2+c2-a2=2.----6
∵由(1)得a=b,∴c2=2,∴. ------8
(3)∵=,∴ 即c2+b2+2=6,--------10
∴c2+b2=4. ∵c2=2, ∴b2=2,即b=. ∴△ABC为正三角形. -----------11
∴-----12
练习册系列答案
相关题目