搜索
题目内容
椭圆的焦点在
y
轴上,一个焦点到长轴的两端点的距离之比是1∶4, 短轴长为8, 则椭圆的标准方程是
;
试题答案
相关练习册答案
依题意可得
,解得
。因为椭圆焦点在
轴上,所以标准方程为
练习册系列答案
1加1阅读好卷系列答案
专项复习训练系列答案
初中语文教与学阅读系列答案
阅读快车系列答案
完形填空与阅读理解周秘计划系列答案
英语阅读理解150篇系列答案
奔腾英语系列答案
标准阅读系列答案
53English系列答案
考纲强化阅读系列答案
相关题目
.(本小题满分14分)
已知椭圆
的左焦点为
,离心率e=
,M、N是椭圆上的动
点。
(Ⅰ)求椭圆标准方程;
(Ⅱ)设动点P满足:
,直线OM与ON的斜率之积为
,问:是否存在定点
,
使得
为定值?,若存在,求出
的坐标,若不存在,说明理由。
(Ⅲ)若
在第一象限,且点
关于原点对称,点
在
轴上的射影为
,连接
并延长
交椭圆于点
,证明:
;
(本题满分15分)如图,点
为圆形纸片内不同于圆心
的定点,动点
在圆周上,将纸片折起,使点
与点
重合,设折痕
交线段
于点
.现将圆形纸片放在平面直角坐标系
中,设圆
:
,记点
的轨迹为曲线
.
⑴证明曲线
是椭圆,并写出当
时该椭圆的标准方程;
⑵设直线
过点
和椭圆
的上顶点
,点
关于直线
的对称点为点
,若椭圆
的离心率
,求点
的纵坐标的取值范围.
在双曲线
中,
,且双曲线与椭圆
有公共焦点,则双曲线的方程是( )
A.
B.
C.
D.
已知椭圆
(
,且
为常数),椭圆
焦点在
轴上,椭圆
的长轴长与椭圆
的短轴长相等,且椭圆
与椭圆
的离心率相等,则椭圆
的方程为:
.
(本小题满分12分)
已知椭圆
的长轴长为4,离心率为
,
分别为其左右焦点.一动圆过点
,且与直线
相切.
(Ⅰ)(ⅰ)求椭圆
的方程; (ⅱ)求动圆圆心
轨迹的方程;
(Ⅱ) 在曲线上
有两点
,椭圆
上有两点
,满足
与
共线,
与
共线,且
,求四边形
面积的最小值.
过点
的椭圆
的离心率为
,椭圆与
轴交于两点
,过点
的直线
与椭圆交于另一点
,并与
轴交于点
,直线
与直线
交于点
(1)当直线
过椭圆的右焦点时,求线段
的长;
(2)当点
异于点
时,求证:
为定值
如图,已知椭圆
(a>b>0)的离心率
,过顶点A、B的直线与原点的距离为
.
(1)求椭圆的方程.
(2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点.问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.
已知椭圆
,以原点为圆心,椭圆的短半轴为半径的圆与直线
相切.
(1)求椭圆C的方程;
(2)设
轴对称的任意两个不同的点,连结
交椭圆
于另一点
,证明:直线
与
x
轴相交于定点
;
(3)在(2)的条件下,过点
的直线与椭圆
交于
、
两点,求
的取值范围.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总