题目内容
【题目】在直角坐标系中,曲线的参数方程为(为参数),若以该直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为:(其中为常数).
(1)若曲线与曲线有两个不同的公共点,求的取值范围;
(2)当时,求曲线上的点与曲线上点的最小距离.
【答案】(Ⅰ)或;(Ⅱ).
【解析】
试题消去参数把曲线的参数方程化为普通方程,利用公式把曲线的极坐标方
程化为直角坐标方程,利用数形结合的思想可以得出曲线有一个公共点时的的范围;(2)直线
N:,设M上点为,,则 ,由此可求
得最小值.
试题解析:对于曲线M,消去参数,得普通方程为,曲线是抛物线的一部分; 对于曲线N,化成直角坐标方程为,曲线N是一条直线. (2分)
(1)若曲线M,N只有一个公共点,则有直线N过点时满足要求,并且向左下方平行运动直到过点之前总是保持只有一个公共点,再接着向左下方平行运动直到相切之前总是有两个公共点,所以满足要求;相切时仍然只有一个公共点,由,得 ,求得.综合可求得的取值范围是:或. (6分)
(2)当时,直线N:,设M上点为,,则
,
当时取等号,满足,所以所求的最小距离为. (10分)
【题目】在某区“创文明城区”(简称“创城”)活动中,教委对本区四所高中学校按各校人数分层抽样,随机抽查了100人,将调查情况进行整理后制成下表:
学校 | ||||
抽查人数 | 50 | 15 | 10 | 25 |
“创城”活动中参与的人数 | 40 | 10 | 9 | 15 |
(注:参与率是指:一所学校“创城”活动中参与的人数与被抽查人数的比值)假设每名高中学生是否参与”创城”活动是相互独立的.
(1)若该区共2000名高中学生,估计学校参与“创城”活动的人数;
(2)在随机抽查的100名高中学生中,随机抽取1名学生,求恰好该生没有参与“创城”活动的概率;
(3)在上表中从两校没有参与“创城”活动的同学中随机抽取2人,求恰好两校各有1人没有参与“创城”活动的概率是多少?
【题目】2019年初,某市为了实现教育资源公平,办人民满意的教育,准备在今年8月份的小升初录取中在某重点中学实行分数和摇号相结合的录取办法.该市教育管理部门为了了解市民对该招生办法的赞同情况,随机采访了440名市民,将他们的意见和是否近三年家里有小升初学生的情况进行了统计,得到如下的2×2列联表.
赞同录取办法人数 | 不赞同录取办法人数 | 合计 | |
近三年家里没有小升初学生 | 180 | 40 | 220 |
近三年家里有小升初学生 | 140 | 80 | 220 |
合计 | 320 | 120 | 440 |
(1)根据上面的列联表判断,能否在犯错误的概率不超过0.001的前提下认为是否赞同小升初录取办法与近三年是否家里有小升初学生有关;
(2)从上述调查的不赞同小升初录取办法人员中根据近三年家里是否有小升初学生按分层抽样抽出6人,再从这6人中随机抽出3人进行电话回访,求3人中恰有1人近三年家里没有小升初学生的概率.
附:,其中.
P() | 0.10 | 0.05 | 0.025 | 0.10 | 0.005 | 0.001 |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |