题目内容

(08年广东佛山质检文)已知函数取得极小值.

(Ⅰ)求ab的值;

(Ⅱ)设直线. 若直线l与曲线S同时满足下列两个条件:

(1)直线l与曲线S相切且至少有两个切点;

(2)对任意xR都有. 则称直线l为曲线S的“上夹线”.

试证明:直线是曲线的“上夹线”.

解析:(I)因为,所以                        ---------------1分

                  -------------------------------2分

解得,                    -------------------------------------------------------------------------3分

此时

,当,                   -------------------------5分

所以取极小值,所以符合题目条件;                  ----------------6分

(II)由

时,,此时

,所以是直线与曲线的一个切点;                     -----------8分

时,,此时

,所以是直线与曲线的一个切点;                     -----------10分

所以直线l与曲线S相切且至少有两个切点;

对任意xR

所以                       ---------------------------------------------------------------------13分

因此直线是曲线的“上夹线”.     ----------14分

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网