题目内容
(08年广东佛山质检理)抛物线的准线的方程为,该抛物线上的每个点到准线的距离都与到定点N的距离相等,圆N是以N为圆心,同时与直线 相切的圆,
(Ⅰ)求定点N的坐标;
(Ⅱ)是否存在一条直线同时满足下列条件:
① 分别与直线交于A、B两点,且AB中点为;
② 被圆N截得的弦长为.
解析:(1)因为抛物线的准线的方程为
所以,根据抛物线的定义可知点N是抛物线的焦点, -----------2分
所以定点N的坐标为 ----------------------------3分
(2)假设存在直线满足两个条件,显然斜率存在, -----------4分
设的方程为, ------------------------5分
以N为圆心,同时与直线 相切的圆N的半径为, ----6分
方法1:因为被圆N截得的弦长为2,所以圆心到直线的距离等于1, -------7分
即,解得, -------------------------------8分
当时,显然不合AB中点为的条件,矛盾! --------------9分
当时,的方程为 ----------------------------10分
由,解得点A坐标为, ------------------11分
由,解得点B坐标为, ------------------12分
显然AB中点不是,矛盾! ----------------------------------13分
所以不存在满足条件的直线. ------------------------------------14分
方法2:由,解得点A坐标为, ------7分
由,解得点B坐标为, ------------8分
因为AB中点为,所以,解得, ---------10分
所以的方程为,
圆心N到直线的距离, -------------------------------11分
因为被圆N截得的弦长为2,所以圆心到直线的距离等于1,矛盾! ----13分
所以不存在满足条件的直线. -------------------------------------14分
方法3:假设A点的坐标为,
因为AB中点为,所以B点的坐标为, -------------8分
又点B 在直线上,所以, ----------------------------9分
所以A点的坐标为,直线的斜率为4,
所以的方程为, -----------------------------10分
圆心N到直线的距离, -----------------------------11分
因为被圆N截得的弦长为2,所以圆心到直线的距离等于1,矛盾! ---------13分
所以不存在满足条件的直线. ----------------------------------------14分