题目内容

18.已知a,b∈R,矩阵$A=[{\begin{array}{l}{-1}&a\\ b&3\end{array}}]$所对应的变换TA将直线2x-y-3=0变换为自身,求实数a,b的值.

分析 根据变换的定义,直接计算即可.

解答 解:设变换TA:$[\begin{array}{l}{x}\\{y}\end{array}]$→$[\begin{array}{l}{x′}\\{y′}\end{array}]$,
则$[\begin{array}{l}{x′}\\{y′}\end{array}]$=$[\begin{array}{l}{-1}&{a}\\{b}&{3}\end{array}]$$[\begin{array}{l}{x}\\{y}\end{array}]$=$[\begin{array}{l}{-x+ay}\\{bx+3y}\end{array}]$,
∵点$[\begin{array}{l}{x′}\\{y′}\end{array}]$在已知直线上,
∴2x′-y′-3=0,
∴2(-x+ay)-(bx+3y)-3=0,
整理得(-b-2)x+(2a-3)y-3=0,
∴$\left\{\begin{array}{l}{-2-b=2}\\{2a-3=-1}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=1}\\{b=-4}\end{array}\right.$.

点评 本题考查矩阵的变换,弄清变换的定义是解决本题的关键,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网