题目内容
如图,在□ABCD中,AB=3,AD=4,∠ABC=60°,过BC的中点E作EF⊥AB,垂足为点F,与DC的延长线相交于点H,则△DEF的面积是 .
2
解:∵四边形ABCD是平行四边形,
∴AD=BC=4,AB∥CD,AB=CD=3,
∵E为BC中点,
∴BE=CE=2,
∵∠B=60°,EF⊥AB,
∴∠FEB=30°,
∴BF=1,
由勾股定理得:EF=" 3" ,
∵AB∥CD,
∴△BFE∽△CHE,
∴EF :EH ="BE" :CE =BF: CH ="2" :2 =1,
∴EF="EH=" 3 ,CH=BF=1,
∵S△DHF= DH•FH=×(1+3)×2 =4 ,
∴S△DEF= S△DHF=2,
故答案为:2
∴AD=BC=4,AB∥CD,AB=CD=3,
∵E为BC中点,
∴BE=CE=2,
∵∠B=60°,EF⊥AB,
∴∠FEB=30°,
∴BF=1,
由勾股定理得:EF=" 3" ,
∵AB∥CD,
∴△BFE∽△CHE,
∴EF :EH ="BE" :CE =BF: CH ="2" :2 =1,
∴EF="EH=" 3 ,CH=BF=1,
∵S△DHF= DH•FH=×(1+3)×2 =4 ,
∴S△DEF= S△DHF=2,
故答案为:2
练习册系列答案
相关题目