题目内容

已知
a
=(
2
,-1),
b
=(
2
2
,2).f(x)=x2+
a
2x+
a
b
,数列{an}满足a1=1,3an=f (an-1)+1
(n∈N,n≥2),数列{bn}前n项和为Sn,且bn=
1
an+3

(1)写出y=f (x)的表达式;
(2)判断数列{an}的增减性;
(3)是否存在n1,n2(n1,n2∈N*),使S n1≥1或S n2
1
4
,如果存在,求出n1或n2的值,如果不存在,请说明理由.
(1)∵
a
2
=(
2
)2+1
=3,
a
b
=
2
×
2
2
-1×2
=-1,
∴f (x)=x2+3x-1.
(2)∵3an=
a2n-1
+3an-1-1+1,∴3(an-an-1)=
a2n-1
≥0,
∵a1=1≠0,∴an>an-1
∴数列{an}单调递增.
(3)由3an=an-1(an-1+3)得出
1
an-1+3
=
an-1
3an

∴bn=
1
an+3
=
an
3an+1
=
a2n
3anan+1
=
3an+1-3an
3anan+1
=
1
an
-
1
an+1

∴Sn=(
1
a1
-
1
a2
)+(
1
a2
-
1
a3
)+
…+(
1
an
-
1
an+1
)

=1-
1
an+1

由(2)知an单调递增,且a1=1,∴a2=
4
3
,an+1≥a2=
4
3

∴0<
1
an+1
3
4
,∴-
3
4
≤-
1
an+1
<0,
1
4
≤Sn<1.
故不存在n1使Sn1≥1,也不存在n2,使Sn2
1
4
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网