题目内容
已知
、
为椭圆
的左、右焦点,且点
在椭圆
上.
(1)求椭圆
的方程;
(2)过
的直线
交椭圆
于
两点,则
的内切圆的面积是否存在最大值?
若存在其最大值及此时的直线方程;若不存在,请说明理由.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032238828555.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032238843546.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032238843313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032238859726.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032238843313.png)
(1)求椭圆
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032238843313.png)
(2)过
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032238906333.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032238921280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032238843313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032238937429.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032238952603.png)
若存在其最大值及此时的直线方程;若不存在,请说明理由.
(1)
;(2)当
不存在时圆面积最大,
,此时直线方程为
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032238968714.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032238984312.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032238999697.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032238999333.png)
试题分析:本题考查椭圆的标准方程和几何性质、直线的方程、平面内两点间的距离公式、三角形面积公式等基础知识,考查用代数方法研究圆锥曲线的性质以及数形结合的数学思想方法,考查运算求解能力、综合分析和解决问题的能力.第一问,先设出椭圆的标准方程,利用椭圆的定义列出
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032239015721.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032239030283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032239046299.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032238921280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032239077266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032239093592.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032239093592.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032239093592.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240322391551111.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032238921280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032239171260.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032238984312.png)
试题解析:(Ⅰ)由已知,可设椭圆
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032238843313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240322392181089.png)
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240322392332462.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032239233458.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032239249473.png)
所以,椭圆
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032238843313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032238968714.png)
(也可用待定系数法
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032239701841.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032239810885.png)
(2)当直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032238921280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032238921280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032239873641.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240322398881151.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240322398881036.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032239920878.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032239920885.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032239935168.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032239951908.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032239966915.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032239982959.png)
设内切圆半径为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032239171260.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032239093592.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032240029546.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032240044932.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032240060491.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032239093592.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240322400911257.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032240107559.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032240122966.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032240122662.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032240138632.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032240154558.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032240122966.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240322401851387.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032240200483.png)
又当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032238984312.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032240232466.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032240247451.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032240263743.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032238999697.png)
故当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032238984312.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032238999697.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032238999333.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目