题目内容
【题目】如图,空间直角坐标系中,四棱锥的底面是边长为的正方形,且底面在平面内,点在轴正半轴上,平面,侧棱与底面所成角为45°;
(1)若是顶点在原点,且过、两点的抛物线上的动点,试给出与满足的关系式;
(2)若是棱上的一个定点,它到平面的距离为(),写出、两点之间的距离,并求的最小值;
(3)是否存在一个实数(),使得当取得最小值时,异面直线与互相垂直?请说明理由;
【答案】(1);(2);(3).
【解析】
(1)根据题意,求出点的坐标,代入抛物线方程,即可得出与的关系式;
(2)设点和的坐标,根据两点间的距离公式,利用二次函数的基本性质,即可得出函数的最小值;
(3)由(2)可知,当时,当取得最小值时,求得,由异面直线与垂直时,,代入即可求出的值.
(1)由四棱锥是底面边长为的正方形,则,
可设与所满足的关系式为,将点横坐标和竖坐标代入该方程得,
解得,因此,与所满足的关系式为;
(2)设点,,
则.
令,设,对称轴为直线.
①当时,即当时,函数在上单调递增,则,此时;
②当时,即当时,此时函数在取得最小值,即,
此时.
因此,;
(3)当时,此时点与原点重合,则直线与为相交直线,不符;
当时,则当取最小值时,,
当异面直线与垂直时,,即,化简得.
,解得.
练习册系列答案
相关题目